友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
一世书城 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

格式塔心理学原理-第47章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



素之一。如果在某些条件下,即两种图形…背景的清晰度相等,其中一种已经发生过一次或若干次,那么很可能同样的清晰度将在同样的条件下发生。鲁宾认为他已经证明了这种“图形的后效”(figuralafter effect);然而,戈特沙尔特(Gottschaldt)于1929年进行的某些实验对这一证明的有效性提出了怀凝。正如我们以前所见的那样,要想证明经验的影响并非像经验主义理论引导我们进行构想的那么容易。不过,我个人的意见是,这样一种现实化的清晰度可能会促进类似的清晰度,在这个意义上说,经验可能会影响图形-背景的清晰度。进一步的实验必须表明我的信念是否正确,以及在何种条件下这种影响(如果它确实存在的话)会发生。          
第六章 环境场——恒常性 
    格局:后象的形状和大小;定位;定位对格局的一般依赖;一般原理:场构成格局的主要方向;由格局的构成而引起的自我定位;在我们的各种例子中一般原理的应用:不变因素;自我定位的特例。格局的恒常性:方向,大小和形状的恒常性。知觉恒常性理论:形状恒常性;大小恒常性;白色和颜色的恒常性。 
格局 
    在上一章中,我们提议对事物和格局(frameworks)进行讨论,并把图形-背景的清晰度(figure-ground articulation)作为那个更为一般问题的一个部分。现在,我们可以进行概括了,以格局为开端,并在结束时补充我们的事物理论。 
一切知觉组织都是格局内的组织 
    现在,我们将证明,一切知觉组织(perceptual organization)都是格局内的组织,或者说,一切知觉组织都依赖于格局内的构造,藉此证明格局的一些显著方面。 
    关于我们的证明,我们可以重新继续我们在上一章里中断的线索。在上一章里,我们就图形对其背景的功能性依赖作了一些说明。根据这些说明,我们看到一个小的图形形状如何依赖于它得以显现的背景。同样的事实也能够借助后象(after…im-age)来加以说明。如果把一个圆的后象投射到一个正面不相等的平面上,那么后象将呈现为椭圆。 
后象的形状和大小 
    对于形状来说为正确的东西,对于大小来说也同样是正确的,一个后象的大小是该后象被投射之距离的函数。这种关系也有赖于投射的方向,我们已经在第三章中讨论过,相对于水平线来说,线的高度越大,其大小就越小。但是,除了这个主要因素之外,还有一些次要的因素,它们有赖于形状和后象本身的清晰度。这些次要因素妨碍了后象大小和距离的严格比例(pro-portionality),一种由埃默特(Emmert)发现的比例,一种在逼真意像的调查中起很大作用的比例。 
    后象的大小所依赖的背景之距离不是客观的或地理的距离(geographical distance),而是现象的或行为的距离(phenomenal orbehavioural distance),对我们当前的目的而言,这是更为重要的事情。弗兰克夫人(Mrs.Frank)受沃克曼(Volkmann)早期实验的影响,在1923年的一个实验中,让她的被试将后象投射在一个平面上,从而在该平面上形成一个关于深的隧道的透视图。接着,后象的大小随着投射于其上的那张纸上的位置而变化;如果它投射在纸上的位置与隧道附近的部分相一致,那么,它就相当地小,如果它投射在纸上的位置与隧道远离的部分相一致,那么,它就相当地大,得出的扩大倍数之比为3:1。毫不奇怪,众所周知的视错觉(optical illusion)现象也显示了同样的结果。在这样一条隧道里所画的两个客观上相等的物体,较近的那个物体看上去会显得较小。 
定位 
    但是,格局也会对定位(localization)产生影响。确实,如果没有稳定的格局,也就不会有稳定的定位,这是一个对空间知觉理论(theory of space perception)来说颇为基本的事实。让我们简要地描述一下海林(Hering)的部位化理论,以便发展我们的论点。在他的理论中,视网膜的每个点都有一对明确的空间值(space values),一个高度值和一个宽度值(height and breadth val…ue),它们与方向相对应,在这个方向上,任何点都会出现,只要将头部竖起,双眼便会沿一个水平面的中央聚焦于一个无限遥远的点上。于是,视网膜中央便将具有“正前方向”的空间值,也就是说,宽度值和高度值都将等于零。垂直地处于上方或下方的点,除了负的和正的高度值以外,其宽度值仍将为零,如果正值是指这些点出现在下方,负值是指这些点出现在正前方向的那个点的上方的话。同理,在中心左右呈水平状的点,其高度值为零,朝着左右两边,其宽度值不断增加。最后,在这一理论中,视网膜的不一致为每个点提供一个深度值(depth value)。我们将在后面讨论深度知觉理论,所以,我们暂且把自己限于前两个维度上。 
    那么,如何检验这种凝视的视网膜点的空间值理论呢?威塔塞克(Witasek)是这一理论的坚定信奉者,他于1910年建议进行下列实验。让你的被试置于一个完全黑暗的房间里,在被试面前安置一个光点,作为他的凝视点。然后,将若干不同的光点一个接一个地在被试面前呈示,并要求被试指明这些不同的光点出现的方向。在威塔塞克看来,这种实验是必要的,因为它并不完全遵循海林的理论,即认为一个视网膜点的高度值和宽度值随着它们离开中心的距离而成比例地增加。也许,这种关系并不简单,换句话说,视网膜点的现象空间值系统不是一幅标记这些点的几何学位置的地图。由此可见,把一根垂直线与一根水平线相比较,对垂直线的众所周知的过高估计,在这种理论中可由下列假设来解释,即高度值比宽度值增加得更快。 
    现在,让我们回到威塔塞克的实验上去。该实验从未真正实施过,原因很简单:因为它无法实施。如果你在一个只见一个光点的完全黑暗的房间里呆上一段时间,那么,这个光点不久便会以飘忽不定的方式开始在房间里到处游动,游动范围可以达到90度。在这期间,凝视达到相当完善的程度,那怕是轻微的眼睛抖动也不会产生。吉尔福德和达伦巴哈(Guilford and Dal-lenbach)曾证明,当光点游动范围在1度以下时,眼睛对光点的凝视会产生这种轻微的眼睛抖动。这些“游动”运动(auto…kineticmovements)证明,没有凝视的视网膜值属于视网膜点;它们在一个格局中产生部位化,但是,当这种格局丧失以后,便不再产生定位。这种对游动运动的解释是由下述事实所证实的,在对这些游动运动作连续观察以后,我们实验中仍保留着的格局的其余部分也开始丧失其稳定性;例如,观察者脚下的地板和他所坐的椅子都开始晃动了。 
定位对格局的一般依赖 
    游动运动是对一般空间格局的存在和功能性效应的深刻证明,但是,这种格局的运作充斥着我们的整个经验。通过一根垂线,可以在我们眼睛的垂直子午线上投射一根线,如果我站在这根线的前面,并笔直地向前望去的话;或者,用一根水平线,在我们的眼睛上投射一根线,如果这根线正好在我书桌上的那张纸上,而我正好俯视那张桌子的话。同样,也可以用处于垂直和水平两者之间的任何一个位置上的一根线进行投射。而且,一般说来,我可按照实际情况看到这根线是垂直的、水平的或倾斜的。当然,我们知道,线的实际位置不可能对线的现象位置产生任何一种直接的影响;我们排除了对下列问题的这种“首选答案”,该问题是:为什么事物像看上去的那样(第三章,见边码pp.77-80)。此刻,我们把注意力集中在以下事实上,同样的部位刺激可以引起大量不同的定位,而且,反过来说,不同的刺激也可以产生同样的定位;我只需抬起和转动我的眼睛,在我面前纸上的线将投射到视网膜的新区域上,然而,还是像先前一样,那根线出现在同样的部位上。如果我把头转向垂线外面,那么,先前投射在垂直的视网膜线上的同样客观的线条,现在将聚焦于倾斜的视网膜线上,而且像以前一样,继续出现于空间上。我们毋须讨论由经典的海林理论说明了的这种方式,我们将把这一结果用于我们的格局理论。 
    在任何一个特定的时刻,我们视网膜上的垂线将引起一些现象线,它们部分垂直,部分水平,而且往往部分倾斜。此外,正如我们已经指出的那样,在视网膜上经常倾斜的线,像在“正常”条件下产生自垂直线的结果那样,也产生同样的结果。可是,另一方面,当视网膜上的一根垂线在行为环境中产生了一根垂线时,则一根非垂直的线不会被视作垂直线,除非在那个包含着非垂直线的场部分之内有一些特殊的因素在起作用。正因如此,如果一条倾斜的视网膜线使我们见到一条垂线的话,那么,一条垂直的视网膜线将会使我们见到一条斜线。因此,尽管视网膜线的方向是共同决定(codetermines)行为线方向的一个因素,但它不是一个由其自身来作用的因素。 
两个问题 
    我们现在正在处理两个问题。尽管这两个问题彼此密切相关,然而还是可以区分的:(1)等同方向的视网膜线将会同时产生不同方向的行为线;(2)相同的视网膜线,在不同条件下,也就是在不同时间里,将引起不同的行为线。 
    让我们就这两种情形举一些例子。对于第一种情形,可供我们选择的例子如此多样,致使我们难以选择。在我面前的书桌上有若干册书;它们的边缘是垂直的,而且,如果我的头部保持笔直的话,则这些边缘便会投射到垂直的视网膜线上。在这些书的前面有一支铅笔,它朝向于我;铅笔的位置是这样的,当书的边缘投射到垂直的视网膜线上时,铅笔也是如此。为了简便起见,我省略了那本台历,它可以作为客观线的例子,也就是投射在垂直的视网膜线上的既非水平又非垂直的客观线。 
    我们已经提供过有关第二种情形的例子。一俟我们的头部倾斜时,垂直线便不再投射到垂直的视网膜线上,以前看上去垂直的物体将继续被看作呈垂直状态,只要我们不是耽在一间完全黑暗的房间里,在这房间里,一根垂直的发光线是唯一可以见到的物体。 
     我们把另一个十分重要的例子归功于威特海默(Wertheimer,1912年)。一面镜子能以这样一种方式容易地被倾斜,结果,实际上垂直线意像将被投射到倾斜的视网膜线上去。一名观察者通过一根管子注视这面镜子,这根管子把在镜子外面可见的一切环境部分从视野中排除出去,观察者通过这面镜子观察房间以及房间里发生的一切。开始时,房间显得乱七八糟。从镜子里看到,人们在倾斜的地板上行走,物体以斜线形式纷纷落到地板上。但是,过了一会儿,这间“镜中的房间”将会一切正常;地板重新呈水平状,物体的坠落路线又呈垂直。 
    理论意义 
    那么,这些事实有何理论意义呢?关于我们第一个问题的事实清楚地表明,一根垂线所产生的现象方向(phenomena
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!