按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
像产生了在形状上和定向上相等的知觉,第二种情况则表明:两个实际相等的刺激产生不等的知觉,也就是走向上的不同。
艾斯勒的结果得到了克林费格的支持(193年a,pp.626f.),后者使用了十分相似的过程,也得到了霍拉迪(Holaday)的支持,后者在大小恒常性方面证实了这一点。所有三位作者在解释这种反论的结果时都说,“线索”(cues)可能在不丧失其结果的情况下在物体的知觉中丧失,或者功能上有效的深度资料毋须成为有意识的,结果“对知觉事物的调解”发生在低于意识过程的水平上。
倘若否认这样一种解释的可能性,那便是固执己见了。不过,另一方面,根据现存的实验资料,我是不愿意接受这种说法的。它将使我们的知觉组织原理变得无效,也就是说,阈上(supraliminally)不同的刺激并不产生完全相等的知觉效果,从而将使一种可以理解的知觉理论成为不可能的事。这样一种激进的理论断言在我看来无法得到引证证据的保证。第二种情况——倾斜定向或距离差异可被知觉,而毋须大小的恒常性——可以不予考虑,因为作者本人把它们称为罕见的(艾斯勒)和模棱两可的(霍拉迪)。另一种情况,也就是相对来说较高程度的恒常性,而毋须对非正常定向或深度差异进行知觉(前述的解释是以此为基础的),也没有得到充分支持。艾斯勒总共列举了19个例子,其中有7个例子属于单眼被试,他们的结果与正常被试的结果在许多方面是有差别的。在余下的12个例子中,只有一个例子发生在正常条件下,所有其他例子都发生在对清晰的空间组织进行干涉的情形中,例如,单眼观察,注意力集中在两个比较物体之间的一点上,以便它们在边缘处被见到,通过半闭的盖子进行观察,等等。霍拉迪提供的例子也同样是正确的。
在这些情况下,不放弃基本原理在我看来是正确的,但须在其他地方寻求对反论例子的解释。我可以想到两种可能性。判断为在形状和定向上相等的两个椭圆形在第三方面有所不同,或者这种反论的结果是由于呈现的系列特征影响其结果的“痕迹”(trace)聚集。这两个不同假设还有待于进一步实验证明。然而,这种实验将填补我们的知识空缺:形状匹配(以及大小匹配)应当由定向匹配(以及距离匹配)予以补充。只有当我们拥有这些资料时,我们才能清楚地看到形状和定向究竟是什么关系(或者大小和距离究竟是什么关系)。
正面平行定向的一个独特例子:“正常走向”
这种知识对于形状恒常性理论来说是一个先决条件,但是这种知识本身不会对该理论有所补充。这是因为,一个理论必须回答下列问题,一个圆的视网膜意像何时导致对一个圆的知觉,何时产生一个非正常定向的椭圆,以及为什么在这两种不同的情况中会有两种不同的结果。这样一种理论可以从下列情形出发,即一个圆的视网膜竟像引起一个正常走向的圆的知觉。这是一个我们在先前已经陈述过的独特例子,现在我们可以在为其独特性作贡献的各种因素中进行选择了。在我们扬弃了作为造成该独特性的一个因素的知觉“真实性”(veridicalness)以后,剩下来的便是在图形的最大单一性和定向之间进行选择。在这两种选择中,第一种容易排除,因为,通常说来,在正面平行位置上呈现的一个椭圆将按此形式出现,而不是作为一个定向不正常的圆出现。这就告诉我们,正面平行的平面是一个特例。该观点不仅为艾斯勒所接受(p.540),而且还可以从我们关于空间主要方向的若干发现中推断出来。从动力角度讲,该假设意指,就一个正面平行平面来说,其自身内部是充分平衡的,所以,若要瓦解它就需要特殊的力。在这样一个平面上,刺激模式将按照最简单的定律产生知觉模式,而且,我们对知觉形式的研究确实在下列条件下进行,在那里,图形在正面平行平面上(或其他某个相似的独特的平面上)呈现。
非正常定向中的形状:应力场中组织的产物
为了看出一个非正面的平行平面,就需要特殊的力,使该平面从其正常位置中旋转过去,这种特殊的力还会遇到一种将该平面拉回到它正常位置中去的抗力。于是,图形的刺激模式将会在应力场(a field of stress)中导致一种组织,这种组织的产物将与那个场不受应力影响时的组织产物(也就是说,正面平行平面)有所不同。在这种情境里,刺激模式引入了新的力量,它们将与对场中的应力负有重大责任的定向之力结合起来,而最终的组织将是这样一种组织,即所有这些力在其中获得最佳平衡。
从这一假设中推论出来的恒常性事实
让我们把这些想法用于艾斯勒实验的具体例子中去,一个围绕垂直轴旋转的椭圆使它的视网膜意像变得更加细长(水平轴相对来说较短),这是与正常位置中同样的椭圆的视网膜意像相比较而言的。结果,椭圆看上去旋转了,但是,如果它的视网膜意像是由一个正面平行的椭圆产生的话,它就不会像通常情况那样变得细长。换言之,椭圆平面中的力(由于椭圆已经旋转)使椭圆沿水平方向延伸。然而,它们并非是场中唯一的力,正如我们在考虑一个矩形以同样方式旋转的情形里所看到的那样。不仅它的视网膜意像由于这种定向的变化而变得更加细长,而且它的形状也从矩形转化为一个不规则的四边形(参见图75a和b,它们代表了一个矩形的正常图和非正常图)。 因此,如果这个视网膜形状引起了一个矩形知觉的话,那么,肯定有一些力在起作用,它们把收敛线(converging lines)变成了平行线。在没有更多的特定资料的情况下,去推测非正常走向的平面上力的实际分布将是不成熟的,或者就脑场中的事件进行具体假设(脑场中的事件是与倾斜定向的图形相一致的),也将是不成熟的。
除了场中的这些力以外,还有其他两种力对知觉到的形状产生了作用,它们是内力(internal forces)和由接近刺激产生的外力(external forces)。我们在前面几章中已经研究过内力和外力(见边码pp.138ff),我们从中见到了后者(外力)的巨大力量。刺激之力是很强的,这一事实在我们目前的上下文中意味着,一种视网膜形状将十分容易产生那种与视网膜相一致的行为形状,那就是说,它将抗拒转化。换言之,场内那些倾向于“歪曲”视网膜形状的力将不得不与视网膜形状所施加的力作斗争。在我们的例子中:一个细长的视网膜椭圆在应力场中产生一个行为形状,该应力倾向于使它变得不那么细长。由于视网膜图形产生了力量,知觉到的图形不会完全屈从于这种应力,而且知觉到的形状将介于视网膜形状和“实际”形状之间的某处,除非组织的内力使这种情境复杂化。例如,让我们考虑一个细长的椭圆形的实际形状,其视网膜意像由于图形的方向,将会变得更加细长。因此,由于图形的非正常方向产生的场内之力,行为的椭圆将会变宽,而且,如果这种变宽十分充分的话,那么,行为的椭圆将使其形状与一个圆充分相似,以便组织的内力(在圆形中,组织的内力处于最稳定的平衡状态)成功地产生这种最简单的形状,或者至少接近这种最简单的形状。
于是,便有可能进行下列推论:最终的平衡将是一种对所有参与的力量来说的平衡。这意味着:知觉到的方向和形状将彼此依赖。如果一个视网膜形状拒绝场力引起的歪曲,那么,它将由此影响方向的表面视角。于是,有了这样一种可能,随着“形状恒常性”的下降,图形表现出来的与正常情况相背的程度也下降,那就是说,知觉到的形状越是与视网膜的形状相似,它与实际的形状便越是不相似。当然,那意味着,形状和方向的某种结合对于一个特定的视网膜形状来说是不变因素,正如我们先前阐述过的那样。
实验证明
我们的若干结论已经得到实验的证实。首先,在通常的情况下,“恒常性”是不完善的,“现象的回归”(Phenomenal regres-sion)也是不完整的,正如艾斯勒(Eissler)、索利斯(Thouless)和克林费格(Klimpfinger)已经发现的那样。其次,恒常性随着方向的角度而减弱(艾斯勒)。该结果是可以从我们的假设中推论出来的,因为视网膜意像与“实际的”形状差别越大,越是需要更大的力量去产生与实际形状相等的知觉到的形状。如果场内的应力(来自非正常方向的应力)随着所需的力量将视网膜形状转变成实际的形状,那么,这种应力就会以同样方式增加,于是,恒常性就不可能成为角度的一种功能。现在,我们尚不了解这两种功能中的任何一种功能,不过,说它们是同一种功能,那是不可能的。让我们从后者开始讨论,即将视网膜形状转变为实际形状的必要力量有赖于方向和角度。按照我们的假设,一种视网膜形状建立起力量,以产生一种相似的心物形状。当形状出现于其中的那个面不正常时,这些力量便与场内的应力发生冲突。由于这种应力,视网膜形状转变成另一种形状,它更像实际的形状。现在,如果视网膜形状和实际形状之间的差别越大(由于图形转动的缘故),那么,把视网膜形状改变成实际形状所需要的力量也越大。然而,说这种关系是一种简单的比例关系,那是不大可能的。从动力角度上讲,更有可能的是,随着这种改变进一步深入,它就变得越发困难,正如一根螺旋弹簧若要产生连续收缩便需要不断增加压力一样。如果我们旋转一个具有水平轴h的图形,使之绕着该图形的垂直轴转动,首先通过某个角度将图形的水平轴减去一定的量m,然后通过另一角度将它的水平轴再减去另一个等量,于是这根水平轴现在该是h-2m。如果需要力量f来把具有水平轴h-2m的图形转化成具有水平轴h的图形,便需要2f以上的力量。现在看来,由于非正常方向,场内的应力要像达到完美的恒定性所要求的力量那样随其角度快速增加是不可能的。恒定性应当像它经常发生的情况那样随角度一起减少。
我在这里使用了“转化”(transformation)这个术语,我的意思并不是指最初的一个非转化形状是由后来成为中心的边缘刺激产生的。我之所以运用这个术语是为了表明一种效应,它将伴随着一组从它们的背景中抽取的力量,由于不同力量的结合而对抗实际结果。这里使用的“转化”术语仅指双倍的向量决定(double vectorial determination),一个从卡多斯(kardos)那里借用的术语(p.170)。
第三,实际的图形越是转离正面的平行位置,便越是表现出非正常的定向。因此,朝着转化的场内应力随着方向的角度而增加,从而使这种转化也随之增加。这样一种测量由艾斯勒提供,A=a-a/p。该值确实随方向的角度而增加,艾斯勒和索利斯(1931年)的实验都表明了这一点。我们在前面(见边码p.227)讨论的“超恒常性”(super…constancy)情况完全适合于我们的理论;