按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
淖畲笮вκ保渌蛩卦蛲耆黄鹱饔昧恕N也⒉蝗衔庵掷嗤剖且恢纸馐停衔茄芯坎煌疃纫蛩氐囊桓鲋傅夹栽怼N怂得髡飧鲈硎怯行У模医邮├锔ィ⊿chriever)的一个有意义的实验中作出推论。施里弗对若干孤立的和结合的深度标准进行了仔细的研究。把一个扭曲的H形周体(见图82)悬挂在一个黑暗的背景前面, 然后,从两个不同点对它进行摄影。这两张照片便用来当作立体视镜的幻灯片。于是,交迭的不对应和阴影结合起来,成为深度因素。如果在这实验中,立体视镜的两张幻灯片相互交换,以便使原来属于右眼的物体现在被左眼看到,原来属于左眼的物体现在被右眼看到,那么深度的轮廓不会改变;有些被试指出,现在的空间并不那么令人印象深刻了,尽管仍然具有充分的可塑性,但却与一幅普通的透视图的深度不同。在这种情形里,网膜像差不会产生任何结果。如果网膜像差仍起作用,那么,整个深度轮廓将会颠倒过来,H形(图82)物体的梁看上去将像凹形的角铁(L形角铁)。对于这种变化的解释,也可根据弹簧种进行类推。上部的水平正面钢条可被视作一个物体,同样,下部那根水平方向的钢条也可被视作一个物体,不过,它被前者遗去了一部分。为了向前移动,必须直接穿越上面的钢条。然而,上面的钢条,作为固体物,是不能被穿透的,从而牢牢地把下面的钢条固定在它的位置上。确实,后者是一个实际的、地理的事物,而前者却是一个行为事物(behavioural thing)。但是,我们已经看到,所谓“事物”是许多行为物体的一种特性,我们认为,行为的“物体属性”在许多方面是与地理的物体属性或物理的物体属性相似的。对于这个假设,我们将在本章末尾详细地进行讨论,因为它解释了知觉的若干事实。
空间的方向错误
在作出上述这些评论以后,我们将结束空间组织动力学的讨论。然而,必须特别提及的是,现象空间或行为空间(pheno-menal or behavioural space)具有一种特性,尽管我们在各个地方已经遇到过它。行为空间并非欧几里得(Euclidean)空间,而是方向错误(anisotropic)的空间,它在不同的方向具有不同的特性。必须区分方向错误的两个方向。一方面,图形和物体的组织创造了应力,这些应力并不限于分离的单位,而是在或大或小程度上对环境场发生影响。大家熟知的一些观错觉,诸如贾斯特罗(Jastrow)和松奈(Zollner)错觉,证明了这种效应,正如我在其他地方已经指出过的那样(1931年,p.1182,1931年a,p.1263)。另一方面,空间作为一种格局(framework),其本身是方向错误的,并通过方向错误决定了格局内部图形和物体的组织。我们已经强调了这样一个事实,即存在着主要方向,这些主要方向对组织产生功能性影响。
两种维度的方向错误
但是,即便在其主要方向上,空间也并非均等的(isotropic )。所谓对垂直方向的过高估计也表明了水平方向和垂直方向的不等性;这种现象表现在除了圆以外的每一种图形的感知之中(参见考夫卡,1931年a,p.1228)。关于这种方向错误的其他表现,我已经在另一篇文章中(1931年a)提到过了,这里我将仅仅提及一下所谓的r运动。如果把一个图形作短时间呈现,那么它就以扩展的运动而出现,并以收缩的运动而消失「肯克尔(Kenkel)];两种运动都是从图形组织的动力学中产生的,这已为林德曼(Lindermann)、哈罗尔(Harrower,1929年)和纽曼(New-man)所证实。然而,这种运动的方向表明了空间的方向错误。林德曼和纽曼发现,一个正方形在水平轴上的运动要比它在垂直轴上的运动更为有力。林德曼还发现,这一情况对于圆和椭圆来说也同样正确。水平和垂直方向的另外一种方向错误是由J.F.布朗(Brown)于1931年发现的。在两种相等的运动中,一种在垂直方向上运动,另一种在水平方向上运动,前者似乎具有更大的速度。这一结果表明,该方向如同对垂直方向进行过高估计一样,但在数量上却大得多,对过高估计来说约达4-5%,而对速度差异来说约达30%。最后,奥本海姆(Oppen-heimer)也已发现,垂直方向构成了主要的运动物体的参照系(见下述)。
三维方向错误
然而,当我们考虑相对来说不是很小的表面,而是最大可能程度上的整个空间时,视觉空间的方向错误就变得格外清楚了。首先,它表现出第三维度在功能上与前两个维度有所不同。有关的实验资料不是太多,而且广泛地散见于各种研究之中。这些资料「诸如奥…福视角现象(Aubert-Foerster phenomenon)」的心理学意义是由杨施发现的(1909年)。奥…福视角现象与那些决定表面大小的因素有关,其他的资料可在视觉运动领域收集到,还有一些资料则取自脑损病人的实验。
我选择了一些实验结果,它们充分表明了方向错误的一些事实。
1.表面色的丧失
我想起了盖尔布(Gelb)的两位病人,他们失去了表面色(surface colours),这在第四章已经讨论过了。我们发现,对于这两位病人来说,与背景相分离的一个表面色沿所有的方向传播,但是,这种传播在第三维度中要比在第一、二维度中大得多。我们在第四章(见边码p.118)提供的解释可以用来表述方向错误。例如,病人望着白色背景上的黑色方块。视网膜分布是知觉组织的第一原因;场内的梯度(gradient)不仅创造了图形与背景的分离,而且还导致了它在一个平面上的定位。现在,对这些病人来说,这种定位是不完善的;白色背景有某种程度的“厚度”,而黑色图形是一个大得多的图形,并稍稍延伸到它的客观界线以外的地方去。这样一来,视网膜条件在前两个维度中产生的凝聚力(force of cohesion)要比在第三维度中产生的凝聚力更为有效;由此可见,三个维度不可能完全相等。
2.第三维度的运动
另一种实验(在第二章已有描述)也表明了类似的方向,那就是虹膜光圈(iris diaphragm)实验。借助虹膜光圈,人们可以在一间完全黑暗的房间里看到一个明亮的表面。如果光圈开着,白色圆圈便似乎趋近,当光圈闭合后,白色圆圈便退向远处——这种结果比起没有趋近和退远的可察觉的扩展和收缩来更经常发生。在这情况下,视网膜意像在前两个维度中的变化引起了第三维度的行为变化,它表明这些变化更容易产生,从而证实第三维度不等于前两个维度。
冯·席勒(Von Schiller)通过视觉运动实验证明了上述解释,我们将在后面讨论这个问题。这里,引述一下作者的话已经足够了:第三维度中的断续运动(stroboscopic motion)似乎比另外两个维度中的运动更为明显。
3.邻近性和清晰性
第三维度本身表明了方向错误,这是由于组织与呈现的物体距离具有差别。我们已经知道当物体被看成较近而不是较远时,同样的视网膜意像会引起较小的行为物体的大小(这一事实构成了大小恒常性的基础)。与此同时,当物体受到高度照明时,它可以更清楚地被见到,而且通常显示出“更明亮”。一方面是外表大小,另一方面是清晰度和明亮度,两者之间的联系在“视物显小症”(micropsia)中尤其明显。这种视物显小症很容易产生,只须将低折射力的凹透镜放在眼睛前面,便可引起视网膜意像的减小,这种情况与实际知觉物体所观察到的缩小是不成比例的。杨施把这一结果称为科斯特现象(Koster phenomenon)。赛恩默斯(Sinemus)最近表明,视物显小症既改变白色(或者,更一般地说,改变物体颜色)又改变明度。这些变化取决于客观照明的强度。就我所能看到的而言,这些作者尚未提及上述事实与表面距离的关系。然而,有一种简单的观察,它对大多数去剧场看戏的人来说是相当熟悉的,我认为这种观察无疑建立了这种关系。把一架普通的望远镜在长度上放大2.5-3倍,但是,当我们用这架望远镜观看舞台上的演员时,演员的身高看来并不比用肉眼看到时更高些。人们可以使自己确信以下的事实,如果一个人用下列方式使用望远镜,即把左侧目镜放在右眼的前面,让左眼保持裸眼状态,接着转动望远镜,使同一个外部物体的两个图像(一个正常图像,另一个放大图像)并排地出现。于是,观察者便会知觉到它们之间在大小尺寸方面的巨大差异;然而,当这个人恢复到正常地使用望远镜时,物体便显得比放大的图像小得多。与此同时,通过望远镜看到的物体显得更清楚和更接近。由此,视网膜意像的放大对于行为物体具有三种不同的效应:(a)它使行为物体稍稍放大,这是最不显著的效应;(b)它使行为物体变得更加清楚;(c)它使行为物体变得更加趋近。效应(a)证明,尽管听起来有点似是而非,但使用一架剧场望远镜确实产生了“视物显小症”——但是,只要我们不把用望远镜或不用望远镜看到的物体大小进行比较,而是把看到的物体大小与各自的视网膜意像进行比较,这种似是而非便会消失。在这一例子中,也有可能在其他一切例子中,较大的邻近性伴随着较大的清晰性。
我认为,奥…福视角现象(Aubert-Foerster Phenomenon)表明了同样的空间方向错误。可是,由于弗里曼(Freeman)表明,引起它的条件并非像杨施原先认为的那么简单,因此,我将省略详细的讨论,并且仅仅提及这样的论点,即奥…福视角现象表明了视力敏锐性对所见距离的依赖,在这个意义上说,用视角来测量的敏锐性,在小距离时要比在大距离时更大。
4.天顶…水平线错觉
另外一种方向错误已由天顶…水平错觉所证明(见第三章)。我们能以这种方式进行系统阐述:我们在一名观察者的居中平面上描绘若干具有不同半径的圆,把他两眼之间的中点作为圆心,并使它们在一个水平半径和一个垂直半径的末端附着相等的圆盘(水平半径用 h1,h2,h3…表示,垂直半径用v1,v2,v3…表示,换言之,我们使用具有不断增加的半径的圆周),而且,我们首先比较相同圆上h和V的外观,然后把一个hk和Vk之间的关系与一个hn和Vn之间的关系进行比较。于是,我们发现,在趋近的圆上,行为的hn和Vn将相等,但是,随着不断增加的距离,h看上去会比相应的V增加更大。这种现象说明,按照空间的方向错误来表述的大小恒常性,在水平维度上要比在垂直维度上更大。正如我们在第三章的讨论中所看到的那样,依附在h和V之间居中位置上的一些圆盘将会表现出一种中间大小(intermediate size),它表明方向错误遍及整个空间。这种方向错误不仅与表面大小有关,而且还与表面距离有关——天空的形状不是球状的,而是水平的;但是,距离的方向错误的量化方面还没有像大小方面那样被很好确定。
方向错误和位移:冯·阿勒施的实验