友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
一世书城 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

复杂性中的思维物质-第48章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



的方程就可以办到。科学哲学家们也早已致力于分析自然科学和社会科学中进行预测的逻辑条件。关于人的预测能力的信念,在本世纪中由于几方面的科学发展而动摇了。量子理论教导我们,一般地说,我们只能作出概率性预测(参见2.3节)。一大类现象是由确定论混沌支配的:尽管它们的运动服从牛顿物理学定律,它们的轨迹却是敏感地依赖于其起始条件的,因而排除了长期预测。在耗散系统中,如同贝纳德实验的流体层(图2.20),有序的出现不可能预测,因为这有赖于微观上的起始小涨落。诸如蝴蝶翅膀扇动那样的随机事件,原则上是可能影响全球的天气动力学的。在第6章中,我们已经知道,经济、商业和社会中的模式和关系常常会剧烈变化。在自然科学之外,人们的行动——这是社会科学中要观察的——能够而且正在影响着未来的事件。因此,预测可以变成自我满足或自欺欺人的预言,它自己在改变着已经建立的模式或过去的关系。预测是否也就只不过是盯住水晶球看呢?   
    但是,几乎我们的所有决策都联系着未来的事件,需要预测关于未来环境的情景。这对于个人的决策的确如此,例如何时与何人结婚、何时和如何投资储蓄;对于影响着整个组织、公司、社会或全球状态的复杂决策也是如此。近些年来,改进经济和生态、管理和政治中的预测和决策已经得到越来越多的强调。经济震荡、生态突变、政治灾难以及诸如新市场的机会、新技术的趋势和新的社会结构,都不应该再是杂乱无章的,不应该是上帝送来的致命事件。人们希望做好准备,因此开始发展起来种种定量的预测方法,它们针对着如商业和管理中的不同的情形。从方法论的观点看,所有的定量预测工具都标志着特定的预测水平,这限制了它的可靠应用。让我们对一些预测工具的长处和短处进行一些考察吧。 
    最通行的定量预测方法是时间序列程序。它们假定,在数据系列中的某种模式是可以在时间上再现的,可以外推到未来。因此,一个时间序列程序,对于预测环境因素如就业水平或超级市场每周的销售情况——在此个体的决策没有多大的影响——可能是合适的。但是,时间序列是不可能对数据模式背后的原因作出解释的。在历史上,巴比伦天文学家就运用着这种方法,他们把月亮东升的数据模式外推到末来,而没有任何基于行星运动模型的解释。在18世纪,物理学家对于太阳黑子的原因知之甚少。但是在太阳黑子的观察中,发现了一种频率和数量的模式,因而通过时间序列的连续来进行预测就成为可能。在商业和经济中,数据序列中隐含着多种模式。某种水平的模式可能在数据中并没有得到体现(例如稳定销售的产品)。某种季节性模式的出现,是按照某种季节因素引起的一系列的涨落,如有些产品的销售依赖于天气。某种循环模式可能不会以恒定的时间间隔再现自身,如金属的价格或国民总产量。某种趋势模式,出现在变量值随时间出现某种一般性增减时。在数据序列中有某种隐含模式时,此模式必须要通过将过去的数值平均化和平权化(“平滑化”)而与杂乱无章区分开来。数学上,线性的平滑化方法可以有效地运用于这样的数据:它们展示了某种趋势模式。但是,平滑化方法并不试图去证明基本隐含模式的个体组分。趋势、循环和季节性因素还可以有子模式,它们必须从分析数据序列的总模式中分离出来、分解开来。 
    在时间序列程序中,某种过去的数据模式被简单地外推到未来,而一个解释性模型则假定了在(“因”)变量y(这是我们希望预测的)和另一个(“自”)变量x之间的关系。例如,因变量y是每单位生产的费用,而决定着生产费用的自变量X是单位产品的数目。在此情形下我们可以在x和y的2维坐标系中建立关系模型,画出一条直线,它在某种意义上将给出这种关系的最好的线性近似。回归分析运用此种最小面积方法,去减少实际观察值y和相应的线性近似直线上的点y之间的距离。显然,在许多情形下这种方法并非一种有效的方式。一个例子是月销售量的预测,它按照一年的季节发生非线性变化。此外,所有的经理都知道,销售量并不只受时间的影响,还受到多种多样因素的影响,如国民总产量、价格、竞争对象、生产代价、税收等等。两个因素的线性相互作用,仅仅是经济中的一种简化,就像经典物理学的线性保守世界中的两体问题一样。 
    但是,一个更精确的复杂模型当然是需要更多的努力、更多的经验和更多的计算时间的。在许多决策的情形下,解释或预测一定的因变量要用到一个以上的变量。举一个普通的例子,销售经理希望预测下一年公司的总销售量,并对影响这种销售量的因素有更好的理解。因为他有一个以上的自变量,他的分析就成了多元回归分析。然而,他希望预测的因变量是表达为自变量的线性函数的。回归方程中的计算基于过去的观察样本的运用。结果是,基于此种回归方程的预测的可靠性,就主要取决于所使用的特定的样本。因此,可靠程度必定由统计显著性检测来度量。与多元回归涉及到一个方程不同,经济计量学模型可能包含多个联立回归方程。在线性方程中,求解的数学方法是基于线性代数和线性优化方法的(例如,单纯形方法)。尽管它们是线性的,经济计量模型可能是非常复杂的,有多个变量,只能用计算机程序和机器来把握。经济学中非线性编程的求解策略常常是将复杂的问题分解成子问题,使之可以近似地作为线性问题来处理。 
    运用这些方法时的一个隐含的假设是,与现有历史数据吻合得最好的模型将也是能超出这些数据作出未来预测的最好模型。但是,对于大量的真实世界的情形,这种假设并不见得有效。而且,在经济学和商业中使用的绝大多数数据,忽略了测量误差,也难以进行试验控制。因此,有必要理解,当已建立起来的过去模式发生变化时,种种预测方法是如何成功的。预测在标志着每一方法的不同预测水平上是不同的。显然,不存在唯一的方法,它可以很好地预测所有的序列和预测水平。有时,过去的数据完全不能显示未来的变化。因此,如果没有内部知识,要预测一个模式的变化是不可能的。模式转移或“范式变化”是商人和经理的日常经验,而非库恩等人的传统中某些科学哲学家们的超常见解。 
    有没有可以决定数据序列中的模式或关系何时发生变化的定量程序?这种方法的确存在着,其中运用追踪信号来显示预测误差中的变化,以表明何时发生了非杂乱的转移。在质量控制流程中,例如,对于小汽车的生产序列,对设备的输出要进行周期取样。只要样本的均值落在控制限度以内,设备的运行就被认为是正常的。当情况不是这样时,就停止生产并采取适当的措施,以使其重新正常运行。一般说来,定量预测方法的自动监测遵循着这种质量控制流程概念。任何时间进行的预测,其误差(即实际值减去预测值)都与控制限度的上限和下限进行对照。如果它落在可接受的范围中,外推的模式就没有变化。如果预测的误差落在控制误差之外,已建立的模式中就很可能发生了某种系统的变化。当涉及到大量的预测时,通过追踪信号进行自动监测可能是合适的。但是在只有一个序列或几个序列时,人们就只能伺机而动,去发现此商业数据的趋势中是否发生了变化。 
    预测技术和市场、新产品或服务的赢利的未来趋势以及与相应的就业和失业相联系的趋势,是管理者和政治家面临的最困难但也是最紧迫的任务之一。他们决策依赖于大量的技术、经济、竞争、社会和政治的因素。自从20世纪50年代出现了商业计算机以来,人们燃起了这样的希望,即通过计算速度的加快和数据存储的增加把握这些复杂的问题。的确,任何定量的预测方法都可以编程放进计算机中去运行。因为没有任何一种方法可以适用于所有的情形,于是发展起来以计算机为基础的多预测系统,从而为管理者提供一组选择方法的清单。一个例子是预测系统SIBYL,其名称来源于古代的预言家西比尔。相传西比尔曾把著名的《西比尔占语集》出售给罗马大帝塔克文(高傲的)。 
    的确,SIBYL是一个基于知识的系统(参见5.2节)的计算机化预测方法包。它提供的程序包括进行数据准备和数据处理,从屏幕上选用可利用的预测方法,所选方法的运用,对预测方法的比较、选取和组合。屏幕预测技术选择中,基于知识系统的推理组件提示了这样的方法:它们以大范围预测运用和决策规则样本为基础,是最接近于匹配特定的环境及其特点的。SIBYL的最终功能是,检验和比较其中的哪一种提供了最好的结果。使用者和系统的界面,要尽可能地友好和有效率,以适用于预测专家,也适合于新手。然而,我们决不要忘记,SIBYL只可能优化所存贮的预测方法。原则上,预测方法的预测水平,不可能由使用计算机而得到放大。与人的专家具有学习能力相反,如SIBYL这样的预测系统仍然是程序控制的,具有基于知识系统的典型局限性。 
    一般说来,基于计算机的预测自动机是遵循线性思维路线的。另一方面,现代计算机的能力不断增加,鼓舞着研究人员去分析非线性问题。在20世纪50年代中叶,气象学家偏向于使用基于线性回归概念的统计预测方法。这种发展,得到了诺什·维纳对于稳恒随机过程的成功预测的支持。爱德华·洛仑兹对这种统计预测思想产生了怀疑,并决定对比非线性动力学模型从实验上来检测其有效性(参见2.4节)。天气和气候是一个有能量耗散的开放系统的例子。为这种系统建立的模型中,用相空间的点表示其状态,用轨迹来表示其行为。经过一定时间后,轨迹就达到了某个吸引集(“吸引子”),这可以是此系统的某个稳定的点(图2.14a或图3.11c)、某个周期振荡,叫做极限环(图3.11b)或奇怪吸引子(图2.21)。如果人们希望预见包含某个稳定点或极限环的系统的行为,人们可以观察到附近的轨迹会发散,不会生长,甚至会消失(图7.2)。在这种情形下,整体的起始条件将达到定态,相应的系统也就是可预测的。一个例子是,用非线性的洛特卡…沃尔特拉方程建模的生态系统,捕食和被捕食群体具有周期轨迹。附近轨迹的发散和收敛,可以用所谓的李亚普诺夫指数进行数值度量:   
    我们考虑时刻t=0起始条件为x(0)和x’(0)的两条邻近的轨迹x(t)和x’(t),矢量d(t)的长度d(t)='x’(t)-x(t)'。如果轨迹收敛,那么d(t)≈eΛt且Λ<0。量Λ叫做李亚普诺夫指数,定义为 
    Λ(x(0),d(0))= [(1/t)ln(d(t)(0))] 
    如果其值为正,李亚普诺夫指数就给出了收敛速率。在图7.2中模型过程x’(t)对真实过程x(t)提供了可靠的预测,因为假定此系统具有依赖于其起始条件的收敛轨迹。 
   
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!