按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
氐模ü亓模┳刺庖丫贓PR实验中得到了高度的确证。从哲学上看,(量子)整体大于其部分之和。非局域性是量子世界的一个基本性质,这不同于经典的哈密顿系统。我们在讨论心-脑和人工智能的出现时,将返回到这个问题(第4-5章)。
玻尔的对应原理引出了这样一个问题:经典的哈密顿系统中存在混沌运动是否将导致相应的量子系统中的无规性。我们对量子力学基本概念的概括给出了某些线索:在从经典的混沌系统转变成相应的量子力学系统时,可望有些变化。与经典力学相反,量子力学仅仅允许统计期望值。尽管薛定谔方程在叠加原理的意义上是线性的,并可以(例如对谐振子)精确求解,而且波函数是由薛定谔方程严格确定的,但这都并不意味着量子状态的性质可以精确地加以计算。我们只可能计算出,在某个空-时点上找到光子或电子的几率密度。
因为海森伯的不确定性原理,在量子世界没有轨迹。因此,用接近的轨迹以指数快速分离来确定性混沌,对于量子系统是不可能的。不确定性原理的另一个方面涉及到的混沌是值得注意的:具有如图2.16所示混沌区的经典相空间。不确定性原理意味着,体积hn中的2n维相空间众多的点是不可分辨的。原因在于小于hn的混沌行为在量子力学中是无法表达出来的。只有在这些混沌区域之外的规则的行为才有可能被表达出来。在此意义上,微小而有限的普朗克常数值可能抑制了混沌。
在量子力学中,人们区分了与时间无关的稳恒系统和与时间相关的哈密顿系统。对于具有稳恒哈密顿量的系统,薛定谔方程可以归结为所谓的线性本征值问题,它允许人们计算出例如氢原子的能级。只要这些能级是分离的,波函数的行为就是规则的,就不会有混沌。这里引出的问题是,具有规则的经典限度的量子系统的能谱,与其相应的经典系统表现出混沌的量子系统的能谱,它们之间是否有区别。时间相关的哈密顿量被用来描述诸如基本粒子和分子的时间演化。
按照玻尔对应原理,可以从研究某些经典哈密顿系统来入手对量子混沌进行考察。它们可以是可积的,近可积的或者混沌的。因此,能量超平面上的轨迹可以是规则的,近规则的或者近混沌的。用相应的算符来代替位置和动量的矢量,使得哈密顿函数量子化,我们就获得相应量子系统的哈密顿算符。接下来就可以推导薛定谔方程和本征值方程。现在,我们可以问一问,经典系统及其可积、近可积或混沌行为的特性,是否可以转变成相应的量子系统。能谱、本征函数等等的情况怎样?这些问题都概括在“量子混沌”的标题下。例如,一些计算表明,一个圆柱势垒中的自由量子粒子的能谱(经典运动对此是混沌的),与圆周上的自由量子粒子的能谱(经典运动对此是规则的)是完全不一样的。
在图2.19中,相邻能级之间的距离的分布用两个例子来说明。图2。19a,b中,一个由两个振荡子耦合构成的系统显示出有两个不同值的耦合系数。图2.19a的经典动力学是规则的,而图2.19b的经典动力学则是近混沌的。
图2.19c,d显示了在均匀磁场中的氢原子的例子。图2.19c相应的经典动力学是规则的,而图2.19d的经典动力学则是近混沌的。规则的与混沌的情形可以由能级的不同分布(油松分布和威格纳分布)来区分,能级的计算是求解相应的薛定谔方程。它们已经在一些数值模型以及实验室激光光谱的测量中得到了确证。在此意义上,量子混沌不是幻象,而是量子世界的复杂的结构特性。哈密顿系统是发现宏观世界和微观世界的混沌的一把钥匙。但是,我们当然不能把确定论混沌的复杂数学结构与通常的无序思想混为一谈。
2.4保守系统、耗散系统和有序突现
由于彭加勒的天体力学(1892),人们从数学上认识到,某些时间演化受非线性哈密顿方程支配的力学系统可能会出现混沌运动。但是,只要科学家没有获得适当的工具去处理不可积系统,对确定论混沌就仅仅是保持着一种好奇而已。在本世纪的最初10年中,发展起来了多种数值程序,用来(至少是近似地)处理非线性微分方程的数学复杂性。现代高速计算机的计算能力和发展了的试验技巧,支持了自然科学和社会科学中非线性复杂系统探究方式取得新的成功。计算机辅助技术使非线性模型可视化,推动了跨学科的应用,在许多科学分支取得了深远的结果。在这种科学背景中(1963),气象学家爱德华·洛仑兹(他曾是著名数学家伯克霍夫的学生)观察到,3个耦合的一级非线性微分方程的动力系统可以导致完全混沌的轨迹。从数学上看,非线性是混沌的一种必要条件,但不是充分条件。它是必要条件,因为线性微分方程可以用人们熟知的数学程序(傅立叶变换)来求解,这并不导致混沌。洛仑兹用来为天气动力学建模的系统,主要是由于其耗散性不同于彭加勒所用的哈密顿系统。大致说来,一个耗散系统并非保守系统,而是“开放”系统,由外部控制参量可以将其调整到临界值,从而引起向混沌的转变。
更准确地说,保守系统以及耗散系统都是以非线性微分方程标志的:x=F(d,Y);矢量x=(x1,…,xd)的非线性函数F依赖于外部的控制参量Y。按照刘维定理,保守系统在相空间的体积元随时间会改变其形状,但是仍旧保持其体积,而耗散系统与此不同,耗散系统的体积元会随时间的增长而蜷缩(参见图2.13和图2.14)。
洛仑兹在模拟全球天气模式中发现了出现扰动的确定论模型。地球在太阳的温暖下,从底部加热着大气。而那寒冷的外部空间,则从大气外壳吸取热量。底层的空气会上升,而上层的空气则力图下降。贝纳德在一些实验中为这种层与层之间的交流建立了模型。大气层中的空气流可以形象地表示为层之间跨越。大量冷暖空气之间的竞相交流,用循环涡旋来代表,叫做贝纳德元胞。在三维情形下,一个涡旋可以是热空气以环状上升,冷空气则从中心下降。于是,大气构成了三维贝纳德元胞的海洋,如同紧密堆积的六面体点阵。从沙漠、雪地或冰原的规则山丘和低谷中,我们可以窥见这种大气涡旋海洋的踪迹。
在典型的贝纳德实验中,重力场中的流体层被从底部加热(图2.20a)。底部被加热的流体力图上升,而顶部的冷流体则力图下降。这两种受到粘滞力的运动是相反的。对于小的温度差△T,粘滞性占有上风,流体保持静止,均匀的热传导进行着热的输送。系统的外部控制参量是所谓的粘滞性瑞利数R,它与△T成正比。在R的临界值,流体的状态变得不稳定,稳恒的对流卷模式发展起来(图2.20b)。
超出了某个较大的临界值R时,出现了向混沌运动的转变。描述贝纳德实验的复杂微分方程,被洛仑兹简化了,从而获得了他著名模型的3个非线性微分方程。每一个微分方程的3个变量中,变量X正比于环状流体的流速,变量Y标志下降和上升流体元之间的温度差,变量Z正比于垂直温度对其平衡值的偏差。从这些方程中可以推导出,相应的相空间的某一种表面的任一体积元都是随时间指数收缩的。因此,洛仑兹模型是耗散的。
利用计算机辅助计算,可以使得由洛仑兹模型的3个方程产生的轨迹形象化。在一定的条件下,在此三维相空间的特定区域被轨迹所收缩,使得一个圈在右边,然后又有几个圈在左边,再后又跑到了右边,如此等等(图2.21)。
这些轨迹的路径非常敏感地依赖于起始条件。它们的值的细微偏差可以导致很快偏离开原路径若干圈。因为它的奇怪的形象,看起来形如猫头鹰的两只眼睛,所以将洛仑兹相的吸引区域叫做“奇怪吸引子”。显然,奇怪吸引子是混沌的。随着轨迹越来越密集的又不互相切断的缠绕,轨迹最终将实现何种拓扑结构呢?这是一个说明所谓分形维定义的例子:
令M是此n维相空间的吸引子的子集。现在,让相空间被边长为E的立方体所覆盖。设N(ε)是立方体的数目,立方体中包含了吸引子M的片断。如果ε收缩到零(ε→O),那么N(ε)与ε的对数比值的负极限即D=-lim InN(ε)/lnε被称作分形维。
如果此吸引子是一个点(图2.14a),则分形维为零。对于稳定的极限环(图2.9),分形维为1。但是对于混沌系统,分形维不是一个整数。一般地,分形维只可能通过数值计算得到。对于洛仑兹模型,奇怪吸引子的分形维D≈2.06±0.01。
另一个已对其混沌运动进行了实验研究的耗散系统是贝洛索夫…札鲍廷斯基反应。在此化学过程中,一个有机分子被溴离子氧化,此氧化被氧化还原系统所催化。化学反应系统中的反应物浓度的变化率,又是用非线性函数的非线性微分方程来描述的。标志贝洛索夫…札鲍廷斯基反应中的混沌行为的变量,是此氧化还原反应系统中的离子浓度。从实验中观察到,适当地组合反应物的浓度,就得到了无规的振荡。这些振荡显示为分立的颜色环。这种分立使非线性形象地显示出来。线性的演化会满足叠加原理。在这种情形下,振荡环对于叠加将互相穿透。
相应的微分方程是自律的,即它们并不明显地依赖于时间。借助计算机辅助的可视化技术对微分运动方程描述的动力系统中的流进行研究通常很方便。它们通过离散方程,以(d…1)维彭加勒映射构造出相应的d维相空间中的轨迹截面点(参见图2.16)。所构造的点,随时间点n的增加标记为x(1),x(2),…,x(n),X(n+1),…。这个相应的方程,对于x(n)=(Xsu1su(n),…,xsud-1su(n)的相继的点x(n+1),具有形式x(n+1)=G(x(n),λ)。这种保守系统与耗散系统的分类,可以概括从流直到彭加勒映射。一个离散的映射方程,如果它导致相空间的体积发生收缩,它就被称作耗散的映射方程。
一个著名的离散映射的例子是所谓的逻辑映射,它在自然科学以及社会科学中都有许多应用。从非线性到混沌的复杂动力系统的基本概念,可以借用相当简单的计算机辅助方法以这种映射来说明。因此,让我们先扼要地说明一下这个例子。在数学上,逻辑映射用二次(非线性)迭代映射来定义:xsunsu+1=axsunsu(1…xsunsu);其区间0≤x≤1,控制参量a在0≤a≤4之间变化。序列xsu1su,xsu2su,xsu3su,…的函数值可以由简单的袖珍计算机来计算。对于a<3,结果收敛到一个不动点(图2.22a)。如果a继续增加到超过了临界值a1,在一定过渡时间之后序列的值就在两个值之间周期地跳跃(图2.22b)。如果a进一步增加,超过了临界值a2,周期的长度将增加一倍。如果再进一步地一增再增,那么周期每次都增加一倍,相应有临界值序列a1,a2,…。但是在超过了某个临界值ac以后,此发展就变得越来越无规和混沌(图2。22c)。图2.23a中的倍周期分叉序列受一个