按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
的频率极限的功能,并可应用于所有的无穷参考序列。
满足这些条件的一个频率概念是相对频率序列聚点的概念。(如果在任何给定的元素之后有一些与α的离差小于一定量,即使这个量很小,就说α值是某一序列的聚点。)这个概念可不加限制地应用于所有无穷序列,这一点可从这个事实中看出,即对于每一个有穷的二择一,与之相应的相对频率序列中必有至少一个这样的聚点存在。由于相对频率决不可能大于1,也不可能小于0,相对频率序列必定由1和0连结起来。而且作为一个无穷的连结起来的序列,它必须(根据著名的Bolzano和Weierstrass)至少有一个聚点。
简而言之,与一个二择一α相应的相对频率序列的第一个聚点被称为“α的中频率(midddle frequency)”。因此,我们可以说:如果一个序列α有一个并且只有一个中频率,那么同时这就是它的频率极限;反之亦然:如果它没有频率极限,那么它就有不止一个中频率。
将会发现中频率概念十分适合于我们的目的。正如前面p 是序列α的频率极限这一点是我们的估计——也许是假说性估计——一样,我们现在也可以使用p是α的中频率这一估计。而且假如我们采取必要的预防措施,我们能够借助这些估计的中频率进行计算,类似我们用频率极限计算一样。此外,中频率概念可应用于所有可能的无穷参考序列,没有任何限制。
如果我们现在试图把我们的符号αF’(β)解释为中频率,而不是频率极限,并且我们因而改变客观概率的定义(第59节),我们的公式大多数仍然是可推导的。然而有一个困难:某一中频率不是惟一的。如果我们估计或推测一个中频率是αF’(β)=p ,那么这不排除αF’(β)有除了p以外的值。如果我们假定这并非如此,那就不言而喻要引入收敛公理。如果在另一方面,我们定义客观概率无需这种具有惟一性的假定,那么我们就获得(至少在第一个例子中)一个模棱两可的概率概念;因为在某些条件下一个序列可同时拥有都是“绝对自由的”若干中频率。但是这是难以接受的,因为我们习惯于用不含糊的或惟一的概率;也就是假定在同一参考序列内对于同一性质,可能有一个,并且只可能有一个概率p。
然而,无需极限公理定义惟一的概率概念的困难是容易克服的。我们可引入惟一性要求(毕竟是最自然的程度)作为最后一步,在假定了序列将是“绝对自由的”以后。这使我们对我们的似机遇序列定义以及客观概率定义提出下列修改作为对问题的一种解决办法。
设α为一个二择一(有一个或数个中频率)。设α的1有一个或只有一个“绝对自由的”中频率p;于是我们说α是似机遇或随机的,并且p是1在α内的客观概率。
这有助于把这个定义分为两个公理性要求。
(1)随机性要求:对于似机遇的二择一,至少必须有一个“绝对自由的”中频率,即它的客观概率p。
(2)惟一性要求:对于同一似机遇的二择一的同一性质,必定有一个且只有一个概率p。
前面建构的实例保证了这个新公理系统的无矛盾性。有可能建构不具有频率极限的序列,虽然它们有一个且只有一个概率。这表明新的公理要来实际上比老的更广泛,更不确切。如果我们以下列形式陈述(如我们可以陈述的那样)我们的老公理,这个事实甚至会变得更加明显:
(1)随机性要求:如上。
(2)惟一性要求:如上。
(2’)收敛公理:对于同一似机遇二择一的同一性质除了它的概率p外不存在其他中频率。
我们可从建议的要求系统中演绎出Bernoulli定理,以及同它一起的经典概率计算定理。这就解决了我们的问题:现在有可能在频率理论的框架内演绎出大数定律,而无需利用收敛公理。此外,不仅第61节公式(1)和Bernoulli定理的文字表述仍然不变,而且我们给予它的解释也仍然不变:在一个没有频率极限的似机遇序列情况下,几乎所有足够长的序列表明与p只有小的离差,这仍然是正确的。在这些序列中(正如在有频率极限的似机遇序列一样)具有拟发散行为的任何长度的节段,也就是与p的离差有任何量的节段,当然不时会出现。但是这些节段比较罕见,因为它们必定被其中所有的(或几乎所有的)节段具有拟收敛行为的序列极端长的部分所补偿。正如计算所表明的,这些延伸部分一定会比它们补偿的具有发散行为的节段长几个数量级。
这也就是解决“机遇理论基本问题”(在第49节就是这样称呼的)的地方。从单个事件的不可预测性和不规则性到概率计算规则对这些事件的可应用性,这看起来自相矛盾的推论实际上是可靠的。假如根据这样一个假说性假定,即在根据先行者所作的任何选择中只出现一个循环的频率——“中频率”——因而没有后效发生,我们就能够以相当的逼近度来表示不规则性。因为根据这些假定,有可能证明大数定律是重言的。坚持这样的结论,即在可以说任何事情在这时和那时都会发生的——虽然某些事情的发生只是罕见的——不规则序列中,某种规则性或稳定性将出现在十分大的子序列中,这是可以允许的,并非自相矛盾的(有人有此主张)。这个结论也不是不重要的,因为为了这个结论我们就需要特殊的数学工具(Bolzano和Weierstrass定理,n-自由度概念,以及Bernoulli定理)。当我们知道,不规则性的假定可以置于某种频率假说(不受后效约束的假说)的形式中,并且知道,如果我们要证明从不可预测性到可预测性,从无知到知识的推论的可靠性,它就必须置于这种形式中,那么这种推论外表的自相矛盾就消失了。
现在已变得很清楚,为什么老的理论不可能适当处理我所说的“基本问题”。大家承认,主观理论能够演绎出Bernoulli定理;但是在大数定理时兴以后它决不能用频率前后一致地解释它(参阅第62节)。因此它决不能说明概率预测统计学上的成功,另一方面,老的频率理论,根据它的收敛公理则明确要求有规则性。因此在这个理论内不会有从小规模的不规则性推论到大规模的稳定性问题,因为它只涉及从大规模的稳定性(收敛公理)同小规模的不规则性(随机公理)结合在一起,推论到大规模的特殊形式的和稳定性(Bernoulli定理,大数定律)。
收敛公理不是概率计算基础的一个必要部分。我用这个结果来结束我的数学计算分析。
现在我们回来考虑性质截然不同的方法论问题,尤其是如何判定概率陈述问题。
65.可判定性问题
无论我们可给概率概念下什么定义,或我们选择什么样的公理表述:只要二项式公式在系统内是可推导出来的,概率陈述就是不可证伪的。概率假说并不排除任何可观察的东西;概率陈述不可能同一个基础陈述发生矛盾,或被它反驳;它们也不可能被任何有限数目的基础陈述所反驳;因此也就不会被任何有限数目的观察所反驳。
让我们假定我们已对某个二择一α提出某个均等机遇假说;例如我们已估计到用一块硬币作掷猜出现“1”和“0”的频率是均等的,因此αF(1)-αF(0)=1/2;再让我们假定我们在经验上发现无例外地一次又一次出现“1”:于是我们无疑会在实际上放弃我们的估计,认为它已被证伪。但在逻辑的意义上不可能有证伪问题。因为我们可以肯定观察的只是一个有限的掷猜序列。并且虽然根据二项式公式,碰巧出现与1/2的离差很大的十分长的有限节段的频率是极小的,然而它必定总仍然是大于0。因此具有甚至最大离差的有限节段十分罕见的出现决不可能反驳这个估计。实际上,我们必定会期望它出现:这是我们估计的一个推断。任何这种节段可计算的罕见性将是证伪概率估计的一种手段,这种希望证明是要落空的,因为甚至一个长的、离差大的节段的频率出现,也总可以说不过是一个更长、离差更大的节段的一次出现。因此不存在在外延方面给定的事件序列,所以不存在能够证伪概率陈述的有限的几个一组的基础陈述。
只有一个无穷的事件序列——根据某项规则在内包上加以定义的——能反驳一个概率估计。但是鉴于第38节阐述的考虑(参阅第43节),这就是说,概率假说是不可证伪的,因为它们的维(dimension)是无限的。所以我们实际上应把它们描述为经验上没有信息的、没有经验内容的。
然而面对物理学利用从概率假说性估计那里得到的预测所取得的成功,任何这种观点显然是不能接受的。(这里所用的论据同早些时候用来反对主观理论把概率解释为重言的论据是一样的。)许多这些估计的科学意义不亚于其他任何物理学假说(例如,不下于某一决定论性质的假说)。并且物理学家常常很能判定他是否可暂时接受某种特定的概率假说为“经验上得到确证的”,或他是否应该把它作为“实践上被证伪的”而加以摈弃,即对于预测设有用处。十分明显,这种“实践上被证伪”只能通过方法论上的判定才能获得,以把高度不可几的事件认作被排除的——被禁止的。但是根据什么理由可认为它们如此呢?我们应从什么地方获得这种思路?这种“高度不可几性”从哪里开始?
由于从纯逻辑观点看,概率陈述不可能被证伪这个事实是不可能有什么疑问的,我们在经验上使用它们这个同样不容置疑的事实似乎必定是对我关于方法(我的划界标准决定性地依赖于它)的基本思想的致命打击。然而我将通过果敢地应用这些思想来试图回答我已提出的问题——什么是可判定性问题。但是要做到这一点,我将首先不得不分析概率陈述的逻辑形式,既考虑到它们之间逻辑上的相互关系,又考虑到它们与基础陈述所处的逻辑关系。
66.概率陈述的逻辑形式
概率估计不是可证伪的。当然,它们也不是可证实的。同样理由这也适用于其他假说,因为看到任何实验结果,不管多么多和多么有利,最后总能确定“正”的相对频率是1/2,并且将总是1/2。
因此概率陈述和基础陈述不可能相互矛盾,也不可能彼此蕴含。然而由此得出结论说概率陈述和基础陈述之间没有任何逻辑关系,那就错了。并且同样不能认为虽然在这两类陈述之间有逻辑关系(因为观察序列同频率陈述显然或多或少是接近一致的),这些关系的分析迫使我们引入一种突破经典逻辑的特殊概率逻辑。与这些观点相反,我认为这些关系完全能够用可推演性和矛盾的“经典”逻辑关系来分析。
从概率陈述的非可证伪性和非可证实性可以推论出,它们没有可证伪的推断,它们本身不可能是可证实陈述的推断。但是相反的可能性并未排除。因为它可以是(α)它们有单向可证实推断[纯粹存在推断,或有推断(there-is-conse-quences)]或(b)它们本身是单向可证伪全称陈述'所有…陈述(all—statem