友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
一世书城 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

上帝掷骰子吗--量子物理史话 作者:castor_v_pollux-第12章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




光量子和传统的电磁波动图象显得格格不入,它其实就是昔日微粒说的一种翻版,假设光

是离散的,由一个个小的基本单位所组成的。自托马斯?杨的时代又已经过去了一百年,

冥冥中天道循环,当年被打倒在地的霸主以反叛的姿态再次登上舞台,向已经占据了王位

的波动说展开挑战。这两个命中注定的对手终于要进行一场最后的决战,从而领悟到各自

存在的终极意义:如果没有了你,我独自站在这里,又是为了什么。

不过,光量子的处境和当年起义的波动一样,是非常困难和不为人所接受的。波动如今所

占据的地位,甚至要远远超过100年前笼罩在牛顿光环下的微粒王朝。波动的王位,是由

麦克斯韦钦点,而又有整个电磁王国作为同盟的。这场决战,从一开始就不再局限于光的

领地之内,而是整个电磁谱的性质问题。而我们很快将要看到,十几年以后,战争将被扩

大,整个物理世界都将被卷入进去,从而形成一场名副其实的世界大战。

当时,对于光量子的态度,连爱因斯坦本人都是非常谨慎的,更不用说那些可敬的老派科

学绅士们了。一方面,这和经典的电磁图象不相容;另一方面,当时关于光电效应的实验

没有一个能够非常明确地证实光量子的正确性。微粒的这次绝地反击,一直要到1915年才

真正引起人们的注意,而起因也是非常讽刺的:美国人密立根(R。A。Millikan)想用实验

来证实光量子图象是错误的,但是多次反复实验之后,他却啼笑皆非地发现,自己已经在

很大的程度上证实了爱因斯坦方程的正确性。实验数据相当有说服力地展示,在所有的情

况下,光电现象都表现出量子化特征,而不是相反。

如果说密立根的实验只是微粒革命军的一次反围剿成功,其意义还不足以说服所有的物理

学家的话,那么1923年,康普顿(A。Hpton)则带领这支军队取得了一场决定性的胜

利,把他们所潜藏着的惊人力量展现得一览无余。经此一役后,再也没有人怀疑,起来对

抗经典波动帝国的,原来是一支实力不相上下的正规军。

这次战役的战场是X射线的地域。康普顿在研究X射线被自由电子散射的时候,发现一个奇

怪的现象:散射出来的X射线分成两个部分,一部分和原来的入射射线波长相同,而另一

部分却比原来的射线波长要长,具体的大小和散射角存在着函数关系。

如果运用通常的波动理论,散射应该不会改变入射光的波长才对。但是怎么解释多出来的

那一部分波长变长的射线呢?康普顿苦苦思索,试图从经典理论中寻找答案,却撞得头破

血流。终于有一天,他作了一个破釜沉舟的决定,引入光量子的假设,把X射线看作能量

为hν的光子束的集合。这个假定马上让他看到了曙光,眼前豁然开朗:那一部分波长变

长的射线是因为光子和电子碰撞所引起的。光子像普通的小球那样,不仅带有能量,还具

有冲量,当它和电子相撞,便将自己的能量交换一部分给电子。这样一来光子的能量下降

,根据公式E = hν,E下降导致ν下降,频率变小,便是波长变大,over。

在粒子的基础上推导出波长变化和散射角的关系式,和实验符合得一丝不苟。这是一场极

为漂亮的歼灭战,波动的力量根本没有任何反击的机会便被缴了械。康普顿总结道:“现

在,几乎不用再怀疑伦琴射线(注:即X射线)是一种量子现象了……实验令人信服地表

明,辐射量子不仅具有能量,而且具有一定方向的冲量。”

上帝造了光,爱因斯坦指出了什么是光,而康普顿,则第一个在真正意义上“看到”了这

光。

“第三次微波战争”全面爆发了。卷土重来的微粒军团装备了最先进的武器:光电效应和

康普顿效应。这两门大炮威力无穷,令波动守军难以抵挡,节节败退。但是,波动方面军

近百年苦心经营的阵地毕竟不是那么容易突破的,麦克斯韦理论和整个经典物理体系的强

大后援使得他们仍然立于不败之地。波动的拥护者们很快便清楚地意识到,不能再后退了

,因为身后就是莫斯科!波动理论的全面失守将意味着麦克斯韦电磁体系的崩溃,但至少

现在,微粒这一雄心勃勃的计划还难以实现。

波动在稳住了阵脚之后,迅速地重新评估了自己的力量。虽然在光电问题上它无能为力,

但当初它赖以建国的那些王牌武器却依然没有生锈和失效,仍然有着强大的杀伤力。微粒

的复兴虽然来得迅猛,但终究缺乏深度,它甚至不得不依靠从波动那里缴获来的军火来作

战。比如我们已经看到的光电效应,对于光量子理论的验证牵涉到频率和波长的测定,而

这却仍然要靠光的干涉现象来实现。波动的立国之父托马斯?杨,他的精神是如此伟大,

以至在身后百年仍然光耀着波动的战旗,震慑一切反对力量。在每一间中学的实验室里,

通过两道狭缝的光依然不依不饶地显示出明暗相间的干涉条纹来,不容置疑地向世人表明

他的波动性。菲涅尔的论文虽然已经在图书馆里蒙上了灰尘,但任何人只要有兴趣,仍然

可以重复他的实验,来确认泊松亮斑的存在。麦克斯韦芳华绝代的方程组仍然在每天给出

预言,而电磁波也仍然温顺地按照他的预言以30万公里每秒的速度行动,既没有快一点,

也没有慢一点。

战局很快就陷入僵持,双方都屯兵于自己得心应手的阵地之内,谁也无力去占领对方的地

盘。光子一陷入干涉的沼泽,便显得笨拙而无法自拔;光波一进入光电的丛林,也变得迷

茫而不知所措。粒子还是波?在人类文明达到高峰的20世纪,却对宇宙中最古老的现象束

手无策。

不过在这里,我们得话分两头。先让微粒和波动这两支军队对垒一阵子,我们跳出光和电

磁波的世界,回过头去看看量子论是怎样影响了实实在在的物质——原子核和电子的。来

自丹麦的王子粉墨登场,在他的头上,一颗大大的火流星划过这阴云密布的天空,虽然只

是一闪即逝,但却在地上点燃了燎原大火,照亮了无边的黑暗。




1911年9月,26岁的尼尔斯?玻尔渡过英吉利海峡,踏上了不列颠岛的土地。年轻的玻尔不

会想到,32年后,他还要再一次来到这个岛上,但却是藏在一架蚊式轰炸机的弹仓里,冒

着高空缺氧的考验和随时被丢进大海里的风险,九死一生后才到达了目的地。那一次,是

邱吉尔首相亲自签署命令,从纳粹的手中转移了这位原子物理界的泰山北斗,使得盟军在

原子弹的竞争方面成功地削弱了德国的优势。这也成了玻尔一生中最富有传奇色彩,为人

所津津乐道的一段故事。

当然在1911年,玻尔还只是一个有着远大志向和梦想,却是默默无闻的青年。他走在剑桥

的校园里,想象当年牛顿和麦克斯韦在这里走过的样子,欢欣鼓舞地像一个孩子。在草草

地安定下来之后,玻尔做的第一件事情就是去拜访大名鼎鼎的J。J。汤姆逊(Joseph John 

Thomson),后者是当时富有盛名的物理学家,卡文迪许实验室的头头,电子的发现者,

诺贝尔奖得主。J。J。十分热情地接待了玻尔,虽然玻尔的英语烂得可以,两人还是谈了好

长一阵子。J。J。收下了玻尔的论文,并把它放在自己的办公桌上。

一切看来都十分顺利,但可怜的尼尔斯并不知道,在漠视学生的论文这一点上,汤姆逊是

“恶名昭著”的。事实上,玻尔的论文一直被闲置在桌子上,J。J。根本没有看过一个字。

剑桥对于玻尔来说,实在不是一个让人激动的地方,他的project也进行得不是十分顺利

。总而言之,在剑桥的日子里,除了在一个足球队里大显身手之外,似乎没有什么是让玻

尔觉得值得一提的。失望之下,玻尔决定寻求一些改变,他把眼光投向了曼彻斯特。相比

剑桥,曼彻斯特那污染的天空似乎没有什么吸引力,但对一个物理系的学生来说,那里却

有一个闪着金光的名字:恩内斯特?卢瑟福(Ernest Rutherford)。

说起来,卢瑟福也是J。J。汤姆逊的学生。这位出身于新西兰农场的科学家身上保持着农民

那勤俭朴实的作风,对他的助手和学生们永远是那样热情和关心,提供所有力所能及的帮

助。再说,玻尔选择的时机真是再恰当也不过了,1912年,那正是一个黎明的曙光就要来

临,科学新的一页就要被书写的年份。人们已经站在了通向原子神秘内部世界的门槛上,

只等玻尔来迈出这决定性的一步了。

这个故事还要从前一个世纪说起。1897年,J。J。汤姆逊在研究阴极射线的时候,发现了原

子中电子的存在。这打破了从古希腊人那里流传下来的“原子不可分割”的理念,明确地

向人们展示:原子是可以继续分割的,它有着自己的内部结构。那么,这个结构是怎么样

的呢?汤姆逊那时完全缺乏实验证据,他于是展开自己的想象,勾勒出这样的图景:原子

呈球状,带正电荷。而带负电荷的电子则一粒粒地“镶嵌”在这个圆球上。这样的一幅画

面,也就是史称的“葡萄干布丁”模型,电子就像布丁上的葡萄干一样。

但是,1910年,卢瑟福和学生们在他的实验室里进行了一次名留青史的实验。他们用α粒

子(带正电的氦核)来轰击一张极薄的金箔,想通过散射来确认那个“葡萄干布丁”的大

小和性质。但是,极为不可思议的情况出现了:有少数α粒子的散射角度是如此之大,以

致超过90度。对于这个情况,卢瑟福自己描述得非常形象:“这就像你用十五英寸的炮弹

向一张纸轰击,结果这炮弹却被反弹了回来,反而击中了你自己一样”。

卢瑟福发扬了亚里士多德前辈“吾爱吾师,但吾更爱真理”的优良品格,决定修改汤姆逊

的葡萄干布丁模型。他认识到,α粒子被反弹回来,必定是因为它们和金箔原子中某种极

为坚硬密实的核心发生了碰撞。这个核心应该是带正电,而且集中了原子的大部分质量。

但是,从α粒子只有很少一部分出现大角度散射这一情况来看,那核心占据的地方是很小

的,不到原子半径的万分之一。

于是,卢瑟福在次年(1911)发表了他的这个新模型。在他描述的原子图象中,有一个占

据了绝大部分质量的“原子核”在原子的中心。而在这原子核的四周,带负电的电子则沿

着特定的轨道绕着它运行。这很像一个行星系统(比如太阳系),所以这个模型被理所当

然地称为“行星系统”模型。在这里,原子核就像是我们的太阳,而电子则是围绕太阳运

行的行星们。

但是,这个看来完美的模型却有着自身难以克服的严重困难。因为物理学家们很快就指出

,带负电的电子绕着带正电的原子核运转,这个体系是不稳定的。两者之间会放射出强烈

的电磁辐射,从而导致电子一点点地失去自己的能量。作为代价
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!