按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
常小的光源,例如在一个遮盖起来的灯上的一个很小的缺口就是点光源。由于屏上有缺口,在很远的墙上的暗背景上现出了光斑。图33表明了这个现象跟光的直线传播关系。所有这些现象,甚至出现光、影和半影的更复杂的那些情况,都可以用光在“真空”和在空气中沿直线传播的假定来解释。
我们另外举一个光通过物质的例子。假设有一束光通过真空,落在玻璃片上,结果会怎样呢?如果直线传播的定律仍然是有效的,那么光束的路线就应像图34中的虚线那样。但实际上不是这样,光束的路线像图上那样折转了,这种现象叫做折射。把一根棍子的一半浸在水里,看起来这根棍子的中间处像是折断了的,这是大家都熟悉的现象,它便是许多折射现象中的一个例子。
这些事实已经足以说明怎样去想出一个简单的光的力学理论了。我们在这里的任务是要指出物质、粒子和力的观念是怎样进入到光学范围内的,并且这种旧的哲学观点最后是怎样崩溃的。
在这里所提出的是这个理论的最简单和最原始的形式。我们假定所有的发光物体都发射光的粒子或微粒,这些微粒落到我们眼睛的视线内便产生光的感觉。我们为了对现象作力学的解释,已经很习惯于引用新的物质了,因此现在也不必踌躇,再来引用一种新的物质,这些微粒必须以已知的速率在真空中沿直线运动,并把消息由发光体带给我们的眼睛。所有表现光的直线传播的现象都支持微粒说,因为通常都认为微粒的运动正是直线运动。这个理论也很简单地解释了光在镜子中的反射,认为这种反射跟图35中所示的那种在力学实验中所观察到的弹性球撞在墙上的那种反射一样。
对折射的解释稍为困难一些,如果不作细致的考查,我们有可能用力学的观点来解释,假使微粒落在玻璃表面上,玻璃中的物质粒子可能对它们施力,这种力很奇怪地只能在最邻近的物质间才发生作用。我们已经知道,任何作用在运动粒子上的力都会改变它的速度。如果作用在光的微粒上的力是垂直于玻璃表面的引力,那么光束新的运动路线将会在原来的路线与垂直线之间。看来这种简单的解释会使光的微粒说得到很大的成功,可是要决定这个理论的适用性和有效范围,我们必须研究新的和更复杂的情况。
色之谜
首先解释自然界中这么多色的不是别人,又是天才的牛顿。这里引牛顿描写他的一个实验的一段话:
在1666年初(那时我正在磨制球面玻璃以外的其他形式的光学玻璃),我做了一个三角形的玻璃棱柱镜,利用它研究色的现象。为了这个目的,我把房间弄成漆黑的,在窗户上做一个小孔,让适量的日光射进来,我又把棱镜放在光的入口处,使光能够折射到对面的墙上去。当我第一次看见由此而产生的鲜明强烈的光的颜色时,使我感到极大的愉快。
从太阳射来的光是“白”的,透过棱镜以后,它便现出可见世界中存在着的所有的色。自然界本身在虹霓的美丽色彩中也表现出同样的结果。自远古以来,人们就企图解释这种现象,圣经中说虹霓是上帝与人类订盟约的一个印章,在某种意义上说,这也算是一种“理论”。不过它不能圆满地解释何以虹霓会常常发生,而且总是与雨有连带关系。在牛顿的伟大的著作中,首次用科学的方法攻破了色之谜,而且对虹霓作了解释。
虹霓的一条边总是红的,而另一条边总是紫的,在这两条边之间排列着所有其他的色。牛顿对这种现象的解释是这样的:在白光中已经存在了各种色。所有的色混在一起越过星际空间和大气而呈现白光的效应。白光可以说是不同色的各种微粒的混合体。在牛顿的实验中,棱镜把它们各自分开了。根据力学理论,折射是由于从玻璃的粒子所发出的力作用在光的粒子上所致。这些力对不同的色的微粒所贡献的作用也不同,对紫色光的力最大,而对红色光的力最小。因此在光离开棱镜以后,每种色的微粒就会沿着不同的路线折射而互相分开。而在虹霓中,雨点的作用便等于棱镜的作用。
现在,光的物质论比以前更复杂了。光的物质不止一种而有很多种,不同的色就有不同的物质。可是假使这个理论有几分真实,它的结论必须跟观察相符。
牛顿的实验中所显现的太阳白光中的色系叫做太阳的光谱,或者更确切些说,是它的可见光谱。像上面所说那样把白光分解为它的各个组元叫做光的色散。假如上面的解释不错,则光谱中分开来的色可以用第二个完全校准的棱镜再混合起来。这个过程应该恰恰和前面的相反,我们应该从前面已经分开了的光得到白光。牛顿用实验证明,确实可以用这种简单的方法从白光的光谱得到白光,也可以从白光得到光谱,无论要做多少次都可以。这些实验是光的微粒说的强大的支持,因为这个理论是认为每种色就有一种微粒,而各种微粒都是不变的物质。牛顿写道:
……那些色不是新产生的,而只是在分开以后才能使它显现出来;因此假如再把它们混合起来,它们又会合成分开以前的那种色。同理,把许多种色混合起来所发生的变化是不真实的,因为如果这些不同种类的射线再分开了,它又会表现在进入混合以前的那种色了。你们知道,蓝色与黄色的粉,假如很细致地混合起来,则肉眼看来是绿色的,可是作为组元的那些微粒的色,却并不因此在实际上有所变化,而只是混杂起来罢了。因为只要用一个很好的显微镜去看,它们还像以前一样,仍旧是蓝色粉和黄色粉互相混杂起来的。
假设我们已经把光谱中很狭窄的一个条子分离出来,这就是说,在许多色之间,我们只让一种色通过缝隙,其余的用屏挡住。通过缝隙的光束便会是一种单色光,就是说,不能再分解为有几个组元的光。这是这个理论的结论,而且它很容易用实验加以确认。这种光束,不管用什么方法都不能进一步分解了。要获得单色光的光源,方法很简单,例如钠在炽热时就发出单色黄光。用单色光做某些光学实验总是很方便的,因为实验的结果会简单得多,这是我们可以理解得到的。
让我们想象突然发生了一件奇怪的事:太阳只射出某一种色的,例如黄色的单色光。那么地球上的种种色都会立刻消失,任何东西都是黄色的或黑色的了!这个预言是光的物质论的一个结论,因为新的色是不能创造的。它的有效性可以用实验来确认:在一个只有炽热的钢作为光源的房内,任何东西都是黄色的或黑色的。地球上这么多的颜色反映为组成白光的各种色。
光的物质论在所有这些例子中似乎都很圆满,不过它必须为每种色引入一种物质,这会使我们感到困惑,而关于所有的光的微粒在真空中都有完全相同的速度的假说也似乎很牵强。
我们可能想象出另一套假定和另一个完全不同性质的理论,它也能同样圆满地作出全部所要求的解释。我们将很快就看到另一个理论的兴起,它虽然根据完全不同的概念,但能够解释同样的光学现象。我们在提出这个新理论的基本假设之前,必须回答一个与这些光学现象毫无关系的问题。我们必须回到力学方面来,并且问一问:
波是什么
伦敦的一个谣言很快就会传到爱丁堡,可是没有一个传播谣言的人曾经往来于两城之间。这里有两类不同的运动,一种是谣言由伦敦到爱丁堡的运动,另一种是传播谣言的这些人的运动。
风经过麦田,会激起一个波,这个波越过整个麦田传播出去。这里我们又必须区别波的运动与每株麦的运动,每株麦只经受微小的摆动。我们都看到过,把一个石子丢到水池中,会产生一些波,它以愈来愈大的圈子传播出去。波的运动与水的粒子的运动极不相同。粒子只作上下运动。我们所观察到的波的运动是一种物质的状态的运动,而不是物质本身的运动。浮在波上的一个软木塞清楚地表明了这一点,因为它是模仿着水的实际运动而上下运动,并不被波所带走。
为了更好地了解波的机构,我们又要考察一个理想实验。假定一个大的空间完全均匀地充满着水,或空气,或其他的“介质”。在中央处有一个球(图36),在实验之初没有任何运动。突然之间,这个球有韵律地“呼吸”起来了,它的体积一下膨胀,一下收缩,不过球的形状始终保持不变,介质会发生些什么事情呢?我们从球开始膨胀的时刻开始考查。直接邻近球的介质的粒子都被向外推出,以致那一层球壳形的水或空气的密度都增加到超过它的正常值。同样,当圆球收缩时,环绕着它的最邻近的那一部分介质的密度便会减小。这些密度的变化会传遍整个介质。构成介质的粒子只作小的振动,但是整个运动却是一个前进波的运动。这里有一个重要的新的情况,便是我们第一次考察到一种不是物质的运动,而是借助于物质而传播的能的运动。
用脉动的圆球为例,我们可以引入两个物理概念,这些概念对描写波是很重要的。第一个概念是波的传播速度,这是与介质有关的,例如对水与空气就不同。第二个是波长的概念,若是海上或河上的波,其波长便是从一个波谷到第二个波谷的距离,或者从一个波峰到第二个波峰的距离。海波的波长比河波的大。至于我们这个由脉动的圆球所引起的波,其波长则为在某种确定的时间内表现密度最大或密度最小的两个邻近的球壳形介质间的距离。很明显,这种距离不单与介质有关,圆球的脉动率当然也会有很大的影响,如果脉动愈快则波长愈短,脉动愈慢则波长愈长。
波长的概念在物理学中是用得非常成功的。它肯定是一个力学概念。波的现象可以简化为粒子的运动,而根据动理论,粒子是物质的组元。因此一般说来,任何一个应用波的概念的理论都可以看作是一种力学理论。例如声学现象便主要是根据这个概念来解释的。振动的物体,例如琴弦和人的声带,都是声波的源,而声波在空气中的传播,和前面所解释的脉动圆球所造成的波的传播一样。因此我们可以利用波的概念,把所有的声学现象都归结为力学现象。
前面已经着重说过,我们必须区别粒子的运动与波本身的运动,而波只是介质的一种状态。这两种运动是极不相同的,但是很明显,在脉动的圆球的例子中,两种运动都是沿着同一直线。介质的粒子沿着很短的线段而振动,而密度则随着这种运动按周期而增减。波传播的方向与振动的方向是相同的,这类波叫做纵波。但这是惟一的一种波吗?为了有利于往后的考察,我们必须理解还可能有另一种不同的波,称为横波。
让我们改变前面的例子、我们仍用一个圆球,不过把它浸在另一类介质中,不用空气或水而用胶状的介质。而且,圆球不再是脉动的,而是先朝一个方向转一个小的角度,然后朝相反的方向转回,并一直以相同的韵律绕着确定的轴转动。胶状物黏附于圆球,其黏附的部分被迫作模仿圆球的运动。这些部分又使再稍微远一点的部分模仿同一运动,这样模仿下去,于是在介质中便产生了