友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
一世书城 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

量子物理史话-第56章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



状态,它也会在我们观测结果时因为拥有众多粒子的〃大脑〃的介入而迅速定域。我们是注定无法直接感觉到任何量子效应了,不知道一个足够小的病毒能否争取到足够长的时间来感觉到〃光子又在这里又在那里〃的奇妙景象(如果它能够感觉的话!)?   
最后,薛定谔方程是线性的,而GRW用密度矩阵方程将它取而代之以后,实际上把整个理论体系变成了非线性的!这实际上会使它作出一些和标准量子论不同的预言,而它们可以用实验来检验(只要我们的技术手段更加精确一些)!可是,标准量子论在实践中是如此成功,它的辉煌是如此灿烂,以致任何想和它在实践上比高低的企图都显得前途不太美妙。我们已经目睹了定域隐变量理论的惨死,不知GRW能否有更好的运气?另一位量子论专家,因斯布鲁克大学的Zeilinger(提出GHZ检验的那个)在2000年为Nature杂志撰写的庆祝量子论诞生100周年的文章中大胆地预测,将来的实验会进一步证实标准量子论的预言,把非线性的理论排除出去,就像当年排除掉定域隐变量理论一样。   
OK,我们将来再来为GRW的终极命运而担心,我们现在只是关心它的生存现状。GRW保留了类似〃坍缩〃的概念,试图在此基础上解释微观到宏观的转换。从技术上讲它是成功的,避免了〃观测者〃的出现,但它没有解决坍缩理论的基本难题,也就是坍缩本身是什么样的机制?再加上我们已经提到的种种困难,使得它并没有吸引到大部分的物理学家来支持它。不过,GRW不太流行的另一个重要原因,恐怕是很快就出现了另一种解释,可以做到GRW所能做到的一切。虽然同样稀奇古怪,但它却不具备GRW的基本缺点。这就是我们马上就要去观光的另一条道路:退相干历史(Decoherent Histories)。这也是我们的漫长旅途中所重点考察的最后一条道路了。 
第十二章 新探险

1953年,年轻,但是多才多艺的物理学家穆雷·盖尔曼(Murray GellMann)离开普林斯顿,到芝加哥大学担任讲师。那时的芝加哥,仍然笼罩在恩里科·费米的光辉之下,自从这位科学巨匠在1938年因为对于核物理理论的杰出贡献而拿到诺贝尔奖之后,已经过去了近16年。盖尔曼也许不会想到,再过16年,相同的荣誉就会落在自己身上。
虽然已是功成名就,但费米仍然抱着宽厚随和的态度,愿意和所有的人讨论科学问   
题。在核物理迅猛发展的那个年代,量子论作为它的基础,已经被奉为神圣而不可侵犯的经典,但费米却总是有着一肚子的怀疑,他不止一次地问盖尔曼:
既然量子论是正确的,那么叠加性必然是一种普遍现象。可是,为什么火星有着一条确定的轨道,而不是从轨道上向外散开去呢?
自然,答案在哥本哈根派的锦囊中是唾手可得:火星之所以不散开去,是因为有人在〃观察〃它,或者说有人在看着它。每看一次,它的波函数就坍缩了。但无论费米还是盖尔曼,都觉得这个答案太无聊和愚蠢,必定有一种更好的解释。
可惜在费米的有生之年,他都没能得到更好的答案。他很快于1954年去世,而盖尔曼则于次年又转投加州理工,在那里开创属于他的伟大事业。加州理工的好学生源源不断,哈特尔(James B Hartle)就是其中一个。60年代,他在盖尔曼的手下攻读博士学位,对量子宇宙学进行了充分的研究和思考,有一个思想逐渐在他的脑海中成型。那个时候,费因曼的路径积分方法已经被创立了20多年,而到了70年代,正如我们在史话的前面所提起过的那样,一种新的理论退相干理论在Zurek和Zeh等人的努力下也被建立起来了。进入80年代,埃弗莱特的多宇宙解释在物理学界死灰复燃,并迅速引起了众人的兴趣……一切外部条件都逐渐成熟,等1984年,格里菲斯(Robert Griffiths)发表了他的论文之后,退相干历史(简称DH)解释便正式瓜熟蒂落了。
我们还记得埃弗莱特的MWI:宇宙在薛定谔方程的演化中被投影到多个〃世界〃中去,在每个世界中产生不同的结果。这样一来,在宇宙的发展史上,就逐渐产生越来越多的〃世界〃。历史只有一个,但世界有很多个!
当哈特尔和盖尔曼读到格里菲斯关于〃历史〃的论文之后,他们突然之间恍然大悟。他们开始叫嚷:〃不对!事实和埃弗莱特的假定正好相反:世界只有一个,但历史有很多个!〃
提起〃历史〃(History)这个词,我们脑海中首先联想到的恐怕就是诸如古埃及、巴比伦、希腊罗马、唐宋元明清之类的概念。历史学是研究过去的学问。但在物理上,过去、现在、未来并不是分得很清楚的,至少理论中没有什么特征可以让我们明确地区分这些状态。站在物理的角度谈〃历史〃,我们只把它定义成一个系统所经历的一段时间,以及它在这段时间内所经历的状态变化。比如我们讨论封闭在一个盒子里的一堆粒子的〃历史〃,则我们可以预计它们将按照热力学第二定律逐渐地扩散开来,并最终达到最大的热辐射平衡状态为止。当然,也有可能在其中会形成一个黑洞并与剩下的热辐射相平衡,由于量子涨落和霍金蒸发,系统很有可能将在这两个平衡态之间不停地摇摆,但不管怎么样,对应于某一个特定的时刻,我们的系统将有一个特定的态,把它们连起来,就是我们所说的这个系统的〃历史〃。
我们要时刻记住,在量子力学中一切都是离散而非连续的,所以当我们讨论〃一段时间〃的时候,我们所说的实际上是一个包含了所有时刻的集合,从t0,t1,t2,一直到tn。所以我们说的〃历史〃,实际上就是指,对应于时刻tk来说,系统有相应的态Ak。
我们还是以广大人民群众喜闻乐见的比喻形式来说明问题。想象一支足球队参加某联赛,联赛一共要进行n轮。那么,这支球队的〃历史〃无非就是:对应于第k轮联赛(时刻k),如果我们进行观测,则得到这场比赛的结果Ak(Ak可以是1:0,2:1,3:3……等等)。如果完整地把这个球队的〃历史〃写出来,则大概是这个样子:
1:2, 2:3, 1:1, 4:1, 2:0, 0:0, 1:3……
为了简便起见,我们现在仅仅考察一场比赛的情况。一场比赛所有可能的〃历史〃的总数,理论上说是无穷多的,当然在现实里,比分一般不会太高。如果比赛尚未进行,或者至少,我们尚不知道其结果,那么对于每一种〃历史〃我们就只能估计它发生的可能性。在实际中,即使是概率也经常很难算准(尽管参考博彩公司的赔率或者浏览一些赌波网站或许能提供某些帮助,但它们有时候是相当误导的),但我们在此讨论的是理论问题,因此我们就假定通过计算,关于任何一种历史我们都能够得到一个准确的概率。比方说,1:0获胜这样一种〃历史〃发生的可能性是10%,1:2落败则有20%……等等。
说了这么多,这些有什么用呢?切莫心急,很快就见分晓。
到现在为止,因为我们处理的都还是经典概率,所以它们是〃可加〃的!也就是说,如果我们有两种历史a和b,它们发生的概率分别是Pa和Pb,则〃a或者b〃发生的概率就是Pa+Pb。拿我们的例子来说,如果我们想问:〃净胜2球的可能性是多少?〃,那么它必然等于所有〃净胜两球〃的历史概率的总和,也就是P(2:0)+P(3:1)+P(4:2)+…这看起来似乎是天经地义。
但让我们回到量子论中来。稀奇的是,在量子论里,这样的加法并不总是能够实现!拿我们已经讨论得口干舌燥的那个实验来说,如果〃电子通过左缝〃是一种历史,〃电子通过右缝〃是另一种历史,那么〃电子通过左缝或者通过右缝〃的可能性是多少呢?我们必须把它放到所谓的〃密度矩阵〃D中去计算,把它们排列成表格!
在这个表格中,呆在坐标(左,左)上的那个值就是〃通过左缝〃这个历史的概率。呆在(右,右)上的,则无疑是〃通过右缝〃的概率。但等等,我们还有两个多余的东西,D(左,右)和D(右,左)!这两个是什么东西?它们不是任何概率,而表明了〃左〃和〃右〃两种历史之间的交叉干涉!要命的是,计算结果往往显示这些干涉项不为0。
换句话说,〃通过左缝〃和〃通过右缝〃这两种历史不是独立自主的,而是互相纠缠在一起,它们之间有干涉项。当我们计算〃电子通过左缝或者通过右缝〃这样一种情况的时候,我们得到的并非一个传统的概率,干脆地说,这样一个〃联合历史〃是没有概率的!这也就是为什么在双缝实验中,我们不能说〃电子要么通过左缝,要么通过右缝〃的原因,它必定同时通过了双缝,因为这两种历史是〃相干〃的!
回到我们的足球比喻,在一场〃量子联赛〃中,所有可能的历史都是相干的,1:0这种历史和2:0这种历史互相干涉,所以它们的概率没有可加性!也就是说,如果1:0的可能性是10%,2:0的可能性是15%,那么〃1:0或者2:0〃的可能性却不是25%,而是某种模糊的东西,它无法被赋予一个概率!
这听上去可真不美妙,如果这些概率不能相加,那么赌球的人或者买足球彩票的人一定都不知所措,没法合理地投入资金了。如果不能计算概率, 那我们还能做什么呢?但是且莫着急,因为奇妙的事情马上就要发生了:虽然我们无法预测〃1:0或者2:0〃的概率是多少,然而我们却的确可以预言〃胜或者平〃的概率是多少!这都是因为〃退相干〃机制的存在!
魔术的秘密在这里:当我们不关心一场比赛的具体比分,而只关心其胜负关系的时候,我们实际上忽略了许多信息。比如说,当我们讨论一种历史是〃胜,胜,平,负,胜,负……〃,而不是具体的比分的时候,我们实际上构建了一种〃粗略的〃历史。在每一轮联赛中,我们观察到的态Ak都包含了无数种更加精细的态。例如当我们说第二轮球队〃胜〃的时候,其中包括了1:0,2:1,2:0,3:1……所有可以归纳为〃胜〃的具体赛果。在术语中,我们把每一种具体的可能比分称为〃精粒历史〃(finegrained history),而把类似〃胜〃,〃负〃这样的历史称为〃粗粒历史〃(coarsegrained history)。
再一次为了简便起见,我们仅仅考察一场比赛的情况。对于单单一场比赛来说,它的〃粗粒历史〃无非有3种:胜,平,负。如果〃胜〃的可能性是30%,〃平〃的可能性是40%,那么〃非胜即平〃,也就是〃不败〃的可能性是多少呢?大家对我们上面的讨论还记忆犹新,可能会开始担忧,因为量子论或许不能给出一个经典的概率来,但这次不同了!这一次,量子论给出了一个类似经典概率的答案:〃不败〃的概率=30+40=70%!
这是为什么呢?原来,当我们计算〃胜〃和〃平〃之间的关系时,我们实际上计算了所有包含在它们之中的〃精粒历史〃之间的关系!如果我们把〃胜〃和〃平〃放到矩阵中去计算,我们的确也会得到干涉项如(胜,平),但这个干涉项是什么呢?它是所有组成两种粗粒历史的精粒历史的干涉之和!也就是说,它包括了〃1:0和0:0之间的干涉〃,〃1:0和1:1之间的干涉〃,〃2:0和1:1之间的干涉〃……等等。总之,每一对可能的干涉都被计算在内了,我们惊奇地发现,所有这些干涉加在一起,正好抵消了个干净。当最后的结果出来时,〃胜〃和〃平〃之间的干涉项即使没有完
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!