°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡with¡¡a¡¡basket¡¡of¡¡three¡¡items¡£¡¡These¡¡three¡¡items¡¡can¡¡be¡¡referenced¡¡using¡¡three¡¡indices¡¡£¨0¡¡=¡¡newyork£»¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1¡¡=¡¡toronto£»¡¡2¡¡=¡¡losangeles£©¡£¡¡This¡¡solution¡¡creates¡¡a¡¡fixed¡content¡¡basket¡£¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Alternatively£»¡¡you¡¡could¡¡create¡¡space¡¡in¡¡the¡¡basket¡¡and¡¡then¡¡manually¡¡fill¡¡the¡¡basket£»¡¡as¡¡follows£º¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ReDim¡¡montreal¡£Connections£¨2£©¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡montreal¡£Connections£¨0£©¡¡=¡¡newyork¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡montreal¡£Connections£¨1£©¡¡=¡¡toronto¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡montreal¡£Connections£¨2£©¡¡=¡¡losangeles¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡The¡¡ReDim¡¡statement¡¡takes¡¡the¡¡array¡¡referenced¡¡by¡¡the¡¡data¡¡member¡¡Connections¡¡and¡¡real
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡locates¡¡it¡¡to¡¡a¡¡new¡¡size¡£¡¡That¡¡size¡¡could¡¡be¡¡larger¡¡or¡¡smaller¡¡than¡¡the¡¡current¡¡size¡£¡¡In¡¡the¡¡example£»¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡the¡¡size¡¡of¡¡the¡¡array¡¡is¡¡2£»¡¡which¡¡does¡¡not¡¡mean¡¡two¡¡elements£»¡¡but¡¡rather¡¡that¡¡it¡¡is¡¡an¡¡array¡¡sized¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡from¡¡the¡¡index¡¡0¡¡to¡¡2¡£¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡The¡¡ReDim¡¡statement¡¡actually¡¡performs¡¡a¡¡redimension¡¡of¡¡an¡¡array¡£¡¡The¡¡example¡¡demon
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡strates¡¡using¡¡it¡¡on¡¡an¡¡empty¡¡array£»¡¡but¡¡you¡¡can¡¡also¡¡use¡¡it¡¡with¡¡an¡¡array¡¡that¡¡contains¡¡data£»¡¡such¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡as¡¡to¡¡enlarge¡¡an¡¡array¡¡without¡¡losing¡¡the¡¡old¡¡data¡£¡¡To¡¡keep¡¡the¡¡old¡¡data¡¡in¡¡a¡¡new¡¡array£»¡¡you¡¡use¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡the¡¡Preserve¡¡keyword£»¡¡as¡¡follows£º¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ReDim¡¡Preserve¡¡montreal¡£Connections£¨2£©¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡montreal¡£Connections£¨0£©¡¡=¡¡newyork¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡montreal¡£Connections£¨1£©¡¡=¡¡toronto¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡montreal¡£Connections£¨2£©¡¡=¡¡losangeles¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡However£»¡¡be¡¡aware¡¡that¡¡if¡¡the¡¡ReDim¡¡statement¡¡causes¡¡an¡¡array¡¡to¡¡shrink£»¡¡you¡¡can¡¡still¡¡lose¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡data¡ªwhatever¡¡elements¡¡are¡¡located¡¡above¡¡the¡¡array¡¡size¡¡are¡¡discarded¡£¡¡To¡¡be¡¡safe£»¡¡before¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡using¡¡ReDim£»¡¡you¡¡might¡¡want¡¡to¡¡reference¡¡the¡¡array¡¯s¡¡¡¡Length¡¡property¡¡to¡¡verify¡¡that¡¡you¡¡are¡¡not¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡shrinking¡¡the¡¡array¡¡and¡¡losing¡¡data¡£¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Page¡¡115¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡CH¡¡AP¡¡T¡¡E¡¡R¡¡¡¡¡¡4¡¡¡¡¡¡¡ö¡¡¡¡¡¡¡¡L¡¡E¡¡A¡¡R¡¡N¡¡I¡¡N¡¡G¡¡¡¡¡¡A¡¡B¡¡OU¡¡T¡¡¡¡¡¡D¡¡AT¡¡A¡¡¡¡S¡¡TR¡¡U¡¡CT¡¡U¡¡R¡¡E¡¡S£»¡¡¡¡¡¡DE¡¡CI¡¡SI¡¡ON¡¡S£»¡¡¡¡¡¡A¡¡N¡¡D¡¡¡¡¡¡L¡¡O¡¡OP¡¡S¡¡93¡¡
¡¡¡¡¡¡¡¡¡¡Using¡¡either¡¡the¡¡fixed¡content¡¡or¡¡ReDim¡¡approach£»¡¡you¡¡allocate¡¡space¡¡for¡¡the¡¡array¡¡and¡¡assign¡¡¡¡
the¡¡variables¡¡representing¡¡the¡¡cities¡¡to¡¡the¡¡individual¡¡elements¡¡of¡¡the¡¡array¡£¡¡Since¡¡Connections¡¡¡¡
is¡¡an¡¡array¡¡of¡¡value¡¡types£»¡¡the¡¡connections¡¡within¡¡the¡¡connections¡¡are¡¡not¡¡set£»¡¡as¡¡shown¡¡in¡¡¡¡
Figure¡¡4¡10¡£¡¡
Figure¡¡4¡10¡£¡¡¡¡The¡¡problem¡¡of¡¡the¡¡missing¡¡connections¡¡for¡¡New¡¡York¡¡
¡¡¡¡¡¡¡¡¡¡The¡¡problem¡¡is¡¡that¡¡the¡¡Connections¡¡array¡¡for¡¡New¡¡York¡¡is¡¡missing¡£¡¡Of¡¡course£»¡¡you¡¡could¡¡be¡¡¡¡
logical¡¡and¡¡say¡¡it¡¡is¡¡missing¡¡because¡¡the¡¡Connections¡¡data¡¡member¡¡for¡¡New¡¡York¡¡has¡¡not¡¡yet¡¡¡¡
been¡¡defined¡£¡¡But£»¡¡and¡¡it¡¡is¡¡a¡¡big¡¡but£»¡¡think¡¡about¡¡how¡¡data¡¡is¡¡referenced¡¡and¡¡think¡¡about¡¡the¡¡¡¡
behavior¡¡summarized¡¡in¡¡Table¡¡4¡1¡£¡¡
¡¡¡¡¡¡¡¡¡¡¡¡Node¡¡is¡¡a¡¡value¡¡type£»¡¡and¡¡when¡¡a¡¡value¡¡type¡¡is¡¡assigned£»¡¡the¡¡values¡¡within¡¡the¡¡type¡¡are¡¡copied¡£¡¡¡¡
Because¡¡the¡¡connections¡¡for¡¡New¡¡York¡¡have¡¡not¡¡been¡¡assigned£»¡¡the¡¡Montreal¡¡Connections¡¡array¡¡¡¡
will¡¡not¡¡contain¡¡any¡¡connections¡¡from¡¡New¡¡York¡£¡¡And¡¡if¡¡you¡¡modify¡¡the¡¡original¡¡variable¡¡for¡¡¡¡
New¡¡York¡¡and¡¡its¡¡connections£»¡¡those¡¡changes¡¡will¡¡not¡¡be¡¡reflected¡¡in¡¡the¡¡array¡¡of¡¡connections¡¡¡¡
that¡¡Montreal¡¡has¡£¡¡
¡¡¡¡¡¡¡¡¡¡At¡¡this¡¡point£»¡¡you¡¡might¡¡think¡¡this¡¡is¡¡not¡¡a¡¡problem£»¡¡but¡¡consider¡¡the¡¡following¡¡New¡¡York¡¡code£º¡¡
ReDim¡¡newyork¡£Connections£¨2£©¡¡¡¡
newyork¡£Connections£¨0£©¡¡=¡¡montreal¡¡
newyork¡£Connections£¨1£©¡¡=¡¡houston¡¡
newyork¡£Connections£¨2£©¡¡=¡¡miami¡¡
¡¡¡¡¡¡¡¡¡¡In¡¡this¡¡example£»¡¡New¡¡York¡¡has¡¡a¡¡connection¡¡to¡¡Montreal£»¡¡and¡¡Montreal¡¡has¡¡a¡¡connection¡¡¡¡
to¡¡New¡¡York£»¡¡pleting¡¡a¡¡full¡¡circle¡£¡¡muters¡¡would¡¡want¡¡this¡¡ability¡¡to¡¡fly¡¡back¡¡and¡¡forth¡¡¡¡
between¡¡cities¡£¡¡But¡¡because¡¡we¡¡are¡¡using¡¡value¡¡types£»¡¡it¡¡is¡¡not¡¡possible¡¡to¡¡fly¡¡back¡¡and¡¡forth£»¡¡as¡¡¡¡
illustrated¡¡by¡¡Figure¡¡4¡11¡£¡¡
¡¡¡¡¡¡¡¡¡¡Figure¡¡4¡11¡¡illustrates¡¡that¡¡recursion¡¡with¡¡value¡¡types¡¡does¡¡not¡¡work¡£¡¡It¡¡shows¡¡that¡¡there¡¡¡¡
are¡¡connections¡¡from¡¡New¡¡York¡¡to¡¡Montreal¡£¡¡But¡¡following¡¡the¡¡connection¡¡to¡¡Montreal£»¡¡it¡¡would¡¡¡¡
appear¡¡that¡¡New¡¡York¡¡has¡¡no¡¡connections£»¡¡which¡¡is¡¡blatantly¡¡false£»¡¡because¡¡we¡¡can¡¡see¡¡the¡¡¡¡
connection¡¡from¡¡New¡¡York¡¡to¡¡Montreal¡£¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Page¡¡116¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡
94¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡CH¡¡AP¡¡T¡¡E¡¡R¡¡¡¡¡¡4¡¡¡¡¡¡¡ö¡¡¡¡¡¡¡¡L¡¡E¡¡A¡¡R¡¡N¡¡IN¡¡G¡¡¡¡¡¡AB¡¡OU¡¡T¡¡¡¡¡¡D¡¡AT¡¡A¡¡¡¡S¡¡TR¡¡U¡¡CT¡¡U¡¡R¡¡E¡¡S£»¡¡¡¡¡¡DE¡¡CI¡¡SI¡¡ON¡¡S£»¡¡¡¡¡¡A¡¡N¡¡D¡¡¡¡¡¡L¡¡O¡¡OP¡¡S¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Figure¡¡4¡11¡£¡¡Missing¡¡connections¡¡for¡¡New¡¡York¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡When¡¡value¡¡types¡¡are¡¡assigned£»¡¡you¡¡are¡¡copying¡¡contents¡¡of¡¡the¡¡value¡¡type¡¡and¡¡thus¡¡getting¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡a¡¡snapshot¡¡of¡¡the¡¡state¡¡of¡¡an¡¡object¡¡at¡¡some¡¡period¡¡in¡¡time¡£¡¡In¡¡essence£»¡¡the¡¡code¡¡illustrates¡¡the¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡chicken¡and¡egg¡¡problem¡¡of¡¡defining¡¡the¡¡connections¡¡for¡¡a¡¡particular¡¡city¡¡and¡¡then¡¡assigning¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡them¡£¡¡For¡¡value¡¡types£»¡¡how¡¡can¡¡you¡¡assign¡¡the¡¡connection¡¡of¡¡one¡¡city¡¡to¡¡another¡¡when¡¡the¡¡to
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡be¡assigned¡¡connection¡¡does¡¡not¡¡exist£¿¡¡The¡¡short¡¡answer¡¡is¡¡you¡¡can¡¯t¡£¡¡The¡¡long¡¡answer¡¡is¡¡you¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡can£»¡¡but¡¡it¡¡would¡¡mean¡¡executing¡¡an¡¡infinite¡¡loop£»¡¡which¡¡is¡¡of¡¡no¡¡use¡¡to¡¡us£»¡¡because¡¡we¡¡want¡¡to¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡do¡¡something¡¡with¡¡the¡¡data¡¡once¡¡it¡¡has¡¡been¡¡assigned¡£¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Switching¡¡to¡¡a¡¡Class¡¡to¡¡Define¡¡a¡¡Node¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡To¡¡fix¡¡the¡¡chicken¡and¡egg¡¡problem£»¡¡we¡¡need¡¡to¡¡use¡¡reference¡¡types¡¡instead¡¡of¡¡value¡¡types¡£¡¡This¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡means¡¡we¡¡need¡¡to¡¡change¡¡the¡¡declaration¡¡of¡¡Node¡¡from¡¡a¡¡¡¡Structure¡¡to¡¡a¡¡Class£»¡¡as¡¡follows£º¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Public¡¡Class¡¡Node¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Public¡¡Shared¡¡RootNodes¡¡As¡¡Node£¨£©¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Public¡¡CityName¡¡As¡¡String¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Public¡¡X¡¡As¡¡Double¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Public¡¡Y¡¡As¡¡Double¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Public¡¡Connections¡¡As¡¡Node£¨£©¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Page¡¡117¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡CH¡¡AP¡¡T¡¡E¡¡R¡¡¡¡¡¡4¡¡¡¡¡¡¡ö¡¡¡¡¡¡¡¡L¡¡E¡¡A¡¡R¡¡N¡¡I¡¡N¡¡G¡¡¡¡¡¡A¡¡B¡¡OU¡¡T¡¡¡¡¡¡D¡¡AT¡¡A¡¡¡¡S¡¡TR¡¡U¡¡CT¡¡U¡¡R¡¡E¡¡S£»¡¡¡¡¡¡DE¡¡CI¡¡SI¡¡ON¡¡S£»¡¡¡¡¡¡A¡¡N¡¡D¡¡¡¡¡¡L¡¡O¡¡OP¡¡S¡¡95¡¡
¡¡¡¡¡¡¡¡Public¡¡Sub¡¡New£¨ByVal¡¡city¡¡As¡¡String£»¡¡ByVal¡¡X¡¡As¡¡Double£»¡¡ByVal¡¡Y¡¡As¡¡Double£©¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Me¡£CityName¡¡=¡¡city¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Me¡£X¡¡=¡¡X¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Me¡£Y¡¡=¡¡Y¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Me¡£Connections¡¡=¡¡Nothing¡¡
¡¡¡¡¡¡¡¡End¡¡Sub¡¡
End¡¡Class¡¡
¡¡¡¡¡¡¡¡¡¡¡¡The¡¡change¡¡is¡¡a¡¡one¡liner¡£¡¡After¡¡the¡¡switch£»¡¡if¡¡we¡¡executed¡¡the¡¡same¡¡assignment¡¡code¡¡as¡¡in¡¡¡¡
the¡¡previous¡¡section¡¡when¡¡Node¡¡was¡¡a¡¡value¡¡type£»¡¡the¡¡data¡¡structure¡¡shown¡¡in¡¡Figure¡¡4¡12¡¡would¡¡¡¡
be¡¡created¡£¡¡
Figure¡¡4¡12¡£¡¡A¡¡valid¡¡state¡¡for¡¡the¡¡New¡¡York¡¡Node¡¡instance¡¡
¡¡¡¡¡¡¡¡¡¡¡¡Looking¡¡at¡¡the¡¡node¡¡structure¡¡in¡¡Figure¡¡4¡12£»¡¡you¡¡can¡¡see¡¡that¡¡New¡¡York¡¡points¡¡to¡¡Montreal¡¡¡¡
and¡¡back¡¡again¡£¡¡The¡¡infinite¡¡connection¡¡does¡¡not¡¡mean¡¡that¡¡you¡¡are¡¡using¡¡infinite¡¡resources¡£¡¡¡¡
Instead£»¡¡it¡¡means¡¡one¡¡reference¡¡is¡¡being¡¡set¡¡to¡¡another£»¡¡as¡¡illustrated¡¡in¡¡Figure¡¡4¡13¡£¡¡
¡¡¡¡¡¡¡¡Variable¡¡montreal¡¡points¡¡to¡¡heap¡¡
¡¡¡¡¡¡¡¡memory¡¡that¡¡contains¡¡the¡¡data¡¡for¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡There¡¡is¡¡a¡¡reference¡¡in¡¡newyork¡¡to¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡the¡¡city¡¡Montreal¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡montreal¡¡and¡¡vice¡¡versa¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡montreal¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡newyork¡¡
¡¡¡¡Public¡¡CityName¡¡As¡¡String¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Public¡¡CityName¡¡As¡¡String¡¡
¡¡¡¡Public¡¡X¡¡As¡¡Double¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Public¡¡X¡¡As¡¡Double¡¡
¡¡¡¡Public¡¡Y¡¡As¡¡Double¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Public¡¡Y¡¡As¡¡Double¡¡
¡¡¡¡Public¡¡Connections¡¡As¡¡Node£¨£©¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Public¡¡Connections¡¡As¡¡Node£¨£©¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡newyork¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡montreal¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Array¡¡element¡¡is¡¡a¡¡reference¡¡to¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡the¡¡other¡¡heap¡¡memory¡¡
Figure¡¡4¡13¡£¡¡Recursive¡¡assignment¡¡that¡¡seems¡¡like¡¡infinite¡¡resources¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Page¡¡118¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡
96¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡CH¡¡AP¡¡T¡¡E¡¡R¡¡¡¡¡¡4¡¡¡¡¡¡¡ö¡¡¡¡¡¡¡¡L¡¡E¡¡A¡¡R¡¡N¡¡IN¡¡G¡¡¡¡¡¡AB¡¡OU¡¡T¡¡¡¡¡¡D¡¡AT¡¡A¡¡¡¡S¡¡TR¡¡U¡¡CT¡¡U¡¡R¡¡E¡¡S£»¡¡¡¡¡¡DE¡¡CI¡¡SI¡¡ON¡¡S£»¡¡¡¡¡¡A¡¡N¡¡D¡¡¡¡¡¡L¡¡O¡¡OP¡¡S¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡The¡¡apparent¡¡infinite¡¡resources¡¡are¡¡the¡¡cross¡reference¡¡recursive¡¡assignment¡¡of¡¡two¡¡pieces¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡heap¡¡memory¡£¡¡It¡¡is¡¡fine¡¡to¡¡do¡¡this£»¡¡and¡¡this¡¡ability¡¡is¡¡one¡¡of¡¡the¡¡reasons¡¡why¡¡people¡¡prefer¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡using¡¡reference¡¡types¡¡to¡¡value¡¡types¡£¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Understanding¡¡Static¡¡Data¡¡Members¡¡and¡¡Methods¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡You¡¯ve¡¡seen¡¡how¡¡a¡¡constructor¡¡can¡¡be¡¡us